Advanced Search
ZHANG Weihua, QIU Xiaoming, CHEN Xiaowei, ZHAO Xihua, SUN Daqian, LI Yongqiang. Microstructure and mechanical property of transient liquid phase bonded aluminum silicon alloy joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (2): 121-124.
Citation: ZHANG Weihua, QIU Xiaoming, CHEN Xiaowei, ZHAO Xihua, SUN Daqian, LI Yongqiang. Microstructure and mechanical property of transient liquid phase bonded aluminum silicon alloy joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (2): 121-124.

Microstructure and mechanical property of transient liquid phase bonded aluminum silicon alloy joint

More Information
  • Received Date: November 22, 2008
  • Microstructure and mechanical property of the transient liquid phase bonded aluminum silicon alloy joints with Cu interlayer were investigated by means of scanning electron microscope, X-ray diffractometry, energy dispersive X-ray spectroscope and electronic tensile testing machine.The results indicate that Cu interlayer reacts with Al from Al-Si alloy to form eutectic liquid phase, and Si from Al-Si alloy will prevent the reaction to some extent.The microstructure of the joint consists of α-Al, Si and intermetallic compounds(CuAl2 and Al4Cu9), meanwhile, the amount of the intermetallic compounds decrease with the increasing of bonding time.The fracture occurs at the bonding region/base metal interface during shear strength testing.With the increase of bonding time, the shear strength of the joint increases firstly and then declines, while 70.2 MPa can be achieved after bonding at 560℃ for 120 min.In addition, a transition from brittle to hybrid brittle and ductile morphology of the fracture surface was found with the increasing of bonding time.
  • Related Articles

    [1]FENG Chao, ZHAO Lei, XU Lianyong, HAN Yongdian. Investigation on fatigue life prediction approach of welded joints via integrated data-driven method[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(11): 8-13, 51. DOI: 10.12073/j.hjxb.20221116002
    [2]ZHOU Shaoze, GUO Shuo, CHEN Bingzhi, ZHANG Jun, ZHAO Wenzhong. Master S-N curve fitting and life prediction method for very high cycle fatigue of welded structures[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(5): 76-82. DOI: 10.12073/j.hjxb.20211116002
    [3]CHEN Bingzhi, HE Zhengping, LI Xiangwei, ZHAO Wenzhong. Comparison of fatigue life predicting methods used in cracked welded component[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(5): 63-68. DOI: 10.12073/j.hjxb.20210824001
    [4]YANG Long, YANG Bing, YANG Guangwu, XIAO Shoune, ZHU Tao, WANG Feng. Analysis on fatigue characteristics of spot welded joints of stainless steel car body[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(7): 18-24. DOI: 10.12073/j.hjxb.20191204005
    [5]LI Xiangwei, FANG Ji, ZHAO Shangchao. Master S-N curve fitting method of welded structure and software development[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(1): 80-85. DOI: 10.12073/j.hjxb.20191018001
    [6]WANG Jujin, YANG Guangwu, YANG Bing, WANG Feng. S-N curve analysis of ring welding based on structural stress method[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(8): 63-68. DOI: 10.12073/j.hjxb.2019400210
    [7]WEI Guoqian, YUE Xudong, DANG Zhang, HE Yibin. S-N and IEFM combined fatigue life analysis for welded structures[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(2): 23-27.
    [8]LIN Liexiong, LU Hao, XU Jijin, CHENG Zhewen. Measuring residual stress of chain based on the method of digital image correlation[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(8): 55-58.
    [9]FENG Chao, LIANG Jin, GUO Nan, LIU Liejin. Measurement of sheet welding buckling deformation[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(7): 61-64.
    [10]ZHAO Wenzhong, WEI Hongliang, FANG Ji, LI Jitao. The theory and application of the virtual fatigue test of welded structures based on the master S-N curve method[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(5): 75-78.

Catalog

    Article views (204) PDF downloads (84) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return