Advanced Search
CHEN Bingzhi, HE Zhengping, LI Xiangwei, ZHAO Wenzhong. Comparison of fatigue life predicting methods used in cracked welded component[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(5): 63-68. DOI: 10.12073/j.hjxb.20210824001
Citation: CHEN Bingzhi, HE Zhengping, LI Xiangwei, ZHAO Wenzhong. Comparison of fatigue life predicting methods used in cracked welded component[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(5): 63-68. DOI: 10.12073/j.hjxb.20210824001

Comparison of fatigue life predicting methods used in cracked welded component

More Information
  • Received Date: August 23, 2021
  • Available Online: April 10, 2022
  • Fatigue cracks appeared in a weld on a transverse shock absorber seat of a railway vehicle during service. By using the fatigue load spectrum, the numerical simulation calculation of fatigue life of cracked welds is carried out by using the nominal stress, hot spot stress and structural stress method respectively. The numerical simulation results show that, the calculation results of the structural stress method are the most consistent with the engineering practice compared with the nominal stress method and the hot spot stress method, and the structural stress method is also obviously better than the other two methods in the identification ability of the stress concentration. Combined with this specific engineering example, this paper further discusses the essential differences of these three methods, and puts forwards a concluding opinion, that is, the structural stress method is most worthy of being popularized in application in the process of anti-fatigue design of welded structures.
  • 周张义. 高速货车转向架焊接部件疲劳强度研究[D]. 成都: 西南交通大学, 2010.

    Zhou Zhangyi. Research on welding strength of high-speed freight car bogies[D]. Chengdu: Southwest Jiaotong University, 2010.
    柳玲. 高速客车转向架焊接构架热点应力评定方法的研究[D]. 北京: 北京交通大学, 2006.

    Liu Lin. Research on hot spot stress evaluation method of welded frame of high-speed passenger car bogie[D]. Beijing: Beijing Jiaotong University, 2006.
    Lazzarin P, Tovo R. A notch intensity factor approach to the stress analysis of welds[J]. Fatigue & Fracture of Engineering Materials & Structures, 1998, 21: 1089 − 1103.
    Rother K, Fricke W. Effective notch stress approach for welds having low stress concentration[J]. International Journal of Pressure Vessels and Piping, 2016, 147: 12 − 20.
    周茜, 但龙. 高速动车组钢制焊接结构疲劳强度的研究方法对比分析[J]. 中国新技术新产品, 2020(22): 108 − 110. doi: 10.3969/j.issn.1673-9957.2020.22.036

    Zhou Qian, Dan Long. Comparative analysis of research methods on fatigue strength of steel welded structures of high-speed EMUs[J]. China's New Technology and New Products, 2020(22): 108 − 110. doi: 10.3969/j.issn.1673-9957.2020.22.036
    杨龙, 杨冰, 阳光武, 等. 不锈钢车体点焊接头疲劳特性分析[J]. 焊接学报, 2020, 41(7): 18 − 24,52. doi: 10.12073/j.hjxb.20191204005

    Yang Long, Yang Bing, Yang Guangwu, et al. Analysis on fatigue characteristics of spot-welded joints of stainless-steel car body[J]. Transactions of the China Welding Institution, 2020, 41(7): 18 − 24,52. doi: 10.12073/j.hjxb.20191204005
    邓彩艳, 刘庚, 龚宝明, 等. 基于Tanaka-Mura位错模型的疲劳裂纹萌生寿命预测[J]. 焊接学报, 2021, 42(1): 30 − 37. doi: 10.12073/j.hjxb.20200706003

    Deng Caiyan, Liu Geng, Gong Baoming, et al. Prediction of fatigue crack initiation life based on Tanaka-Mura dislocation model[J]. Transactions of the China Welding Institution, 2021, 42(1): 30 − 37. doi: 10.12073/j.hjxb.20200706003
    Wang Yue, Chai Peng, Guo Xiaojuan, et al. Effect of connection processes on mechanical properties of 7B04 aluminum alloy structures[J]. China Welding, 2021, 30(2): 50 − 57.
    Hobbacher A F. Recommendations for fatigue design of welded joints and components[M]. Switzerland: Springer International Publishing Switzerland, 2016.
    British Standards Institution. Guide to fatigue design and assessment of steel product. BS 7608-2014 + A1-2015[S]. British: British Standards Institution, 2015.
    王斌杰. 高速列车结构热点应力疲劳评定方法及应用研究[D]. 北京: 北京交通大学, 2008.

    Wang Binjie. Research on hot spot stress fatigue evaluation method and application of high-speed train structure[D]. Beijing: Beijing Jiaotong University, 2008.
    ASME Boiler, Pressure Vessel Committe. ASME boiler and pressure vessel code. Section VIII, Rules for construction of pressure vessels[M]. American Society of Mechanical Engineers, 2015.
    Dong P, Prager M, Osage D. The design master S-N curve in ASME div 2 rewrite and its validations[J]. Welding in the World, 2007, 51(5-6): 53 − 63. doi: 10.1007/BF03266573
    兆文忠, 李向伟, 董平沙. 焊接结构抗疲劳设计—理论与方法[M]. 北京: 机械工业出版社, 2017.

    Zhao Wenzhong, Li Xiangwei, Dong Pingsha. Anti-fatigue design of welded structure—theory and method[M]. Beijing: Mechanical Industry Press, 2017.
    Dong P, Hong J K, Cao Z. Stresses and stress intensities at notches: 'anomalous crack growth' revisited[J]. International Journal of Fatigue, 2003, 25(9): 811 − 825.
    周韶泽, 宗振龙, 聂春戈, 等. 基于结构应力法的焊缝疲劳评估及可视化研究[J]. 大连:大连交通大学学报, 2018, 39(6): 38 − 42.

    Zhou Shaoze, Zong Zhenlong, Nie Chunge, et al. Research on weld fatigue evaluation and visualization based on structural stress method[J]. Dalian:Journal of Dalian Jiaotong University, 2018, 39(6): 38 − 42.
  • Related Articles

    [1]ZHOU Xin, HUANG Ruisheng, LIANG Xiaomei, TENG Bin. Analysis of in-situ heat treatment on microstructure and mechanical properties by quadruple-electrode gas tungsten arc additive manufacturing of 00Cr13Ni5Mo stainless steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION. DOI: 10.12073/j.hjxb.20240202001
    [2]ZHENG Wenjian, LI Zhengyang, WANG Xinghua, GONG Xuhui, YAN Dejun, LAI Shaobo, YANG Jianguo. Effect of heat conduction mode on microstructure and properties of 800 MPa class marine high strength steel fabricated by wire arc additive manufacturing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(5): 38-46. DOI: 10.12073/j.hjxb.20230605004
    [3]XU Junqiang, PENG Yong, LIU Zhihui, ZHOU Qi, KONG Jian. Study on plasma arc additive manufacturing process of dissimilar steels with various composite structures[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(11): 119-124. DOI: 10.12073/j.hjxb.2019400298
    [4]HE Jie, FENG Yuehai, ZHANG Lin, ZHAN Bin. Research on microstructure and mechanical properties of high strength Al-Mg alloy fabricated by double-wire and gas tungsten arc additive manufacturing process[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(7): 109-113. DOI: 10.12073/j.hjxb.2019400191
    [5]ZHAN Bin, FENG Yuehai, HE Jie, LIU Siyu. Research on fabrication and microstructure between carbon steel double wire and single wire plasma arc additive manufacturing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(6): 77-81. DOI: 10.12073/j.hjxb.2019400158
    [6]QIU Ranfeng1,2, LI Qingzhe1, SHI Hongxin1,2, SATONAKA Shinobu3. Resistance spot welding of titanium and mild steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(4): 45-48. DOI: 10.12073/j.hjxb.2018390093
    [7]WANG Peng, XIE Pu, ZHAO Haiyan, GUAN Qiao. Fundamental research of welding plastic strain evolution process:Characteristics and law of evolution process of welding plastic strain in mild steel,stainless steel and titanium alloy thin plate[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (12): 63-66.
    [8]ZHANG Huajun, ZHANG Guangjun, WANG Junheng, WU Lin. Effect of thermal cycles of DSAW on microstructure in low alloy high strength steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (10): 81-84.
    [9]ZHANG Rui hua, FAN Ding, YU Shu rong. Study activating flux for mild steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2003, (2): 16-18.
    [10]Li Wushen, Chang Yiquan, Zhang Bingfan. SMAW expert system for mild and alloyed structural steels[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1994, (3): 197-202.
  • Cited by

    Periodical cited type(2)

    1. 樊炳倩,沈闲. 激光选区熔化参数对热物理过程影响数学模型分析. 激光杂志. 2025(01): 222-227 .
    2. 袁健,何斌,张俊飞,陈国炎,张锁荣. 纳秒激光参数对316L不锈钢沟槽结构加工的影响. 金属加工(热加工). 2024(05): 61-66 .

    Other cited types(2)

Catalog

    Article views (391) PDF downloads (53) Cited by(4)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return