Citation: | ZHOU Shaoze, GUO Shuo, CHEN Bingzhi, ZHANG Jun, ZHAO Wenzhong. Master S-N curve fitting and life prediction method for very high cycle fatigue of welded structures[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(5): 76-82. DOI: 10.12073/j.hjxb.20211116002 |
Bathias C. Fatigue Limit in Metals[M]. Hoboken, USA: John Wiley & Sons, Inc, 2013.
|
何柏林, 叶斌, 邓海鹏, 等. 转向架用SMA490BW钢焊接接头超高周疲劳性能[J]. 焊接学报, 2019, 40(2): 31 − 37.
He Bolin, Ye Bin, Deng Haipeng, et al. Very high cycle fatigue properties of SMA490BW steel welded joints for train bogie[J]. Transactions of the China Welding Institution, 2019, 40(2): 31 − 37.
|
徐腾, 张春芝, 鲁宽亮, 等. 7075铝合金MIG焊接头金相组织、力学性能和耐蚀性的应力敏感性[J]. 焊接学报, 2021, 42(7): 51 − 59. doi: 10.12073/j.hjxb.20210212001
Xu Teng, Zhang Chunzhi, Lu Kuanliang, et al. Microstructure, mechanical properties and stress dependence of corrosion resistance for MIG welded 7075 aluminum joint[J]. Transactions of the China welding institution, 2021, 42(7): 51 − 59. doi: 10.12073/j.hjxb.20210212001
|
魏巍, 张运通, 刘柯, 等. 基于能量耗散的激光焊对接接头高周疲劳性能快速评估[J]. 焊接学报, 2021, 42(12): 48 − 53. doi: 10.12073/j.hjxb.20210607001
Wei Wei, Zhang Yuntong, Liu Ke, et al. Rapid high-cycle fatigue performance evaluation of laser-butt joints based on energy dissipation[J]. Transactions of the China Welding Institution, 2021, 42(12): 48 − 53. doi: 10.12073/j.hjxb.20210607001
|
Sun Hongyu, Zhou Qi, Zhu Jun, et al. Deformation analysis of a friction stir-welded thin sheet aluminum alloy joint[J]. China Welding, 2020, 29(1): 56 − 62.
|
Wei Guoqian, Odsuren Ochbileg, Yue Xudong, et al. Combine S-N curve and fracture mechanics for fatigue life analysis of welded structures[J]. China Welding, 2019, 28(4): 39 − 45.
|
Li Shichen, Zhang Weichang, Zhu Mingliang, et al. On specimen design for high cycle fatigue testing of welded joint[J]. International Journal of Fatigue, 2020, 136: 105597. doi: 10.1016/j.ijfatigue.2020.105597
|
Paul L, Xavier L, Ayhan I. Development of an ultrasonic fatigue testing system for gigacycle fatigue[J]. Material Design & Processing Communications, 2020, 2(6): 1 − 10.
|
Liu Hanqing, Wang Haomin, Huang Zhiyong, et al. Comparative study of very high cycle tensile and torsional fatigue in TC17 titanium alloy[J]. International Journal of Fatigue, 2020, 139: 105720. doi: 10.1016/j.ijfatigue.2020.105720
|
Xu Wei, Zhao Yanguang, Chen Xin, et al. An ultra-high frequency vibration-based fatigue test and its comparative study of a titanium alloy in the VHCF regime[J]. Metals, 2020, 10(11): 1 − 16. doi: 10.3390/met10111415
|
Zhang Zhimeng, Xiang Daohui, Wu Bangfu, et al. Finite element simulation study of ultrasonic vibration-assisted tensile high-volume fraction SiCp/Al composite[J]. Materials (Basel, Switzerland), 2019, 12(23): 1 − 15.
|
Hu Yongtao, Chen Yao, He Chao, et al. Bending fatigue behavior of 316L stainless steel up to very high cycle fatigue regime[J]. Materials (Basel, Switzerland), 2020, 13(21): 1 − 15.
|
ASME Boiler & Pressure Vessel Committee. 2007 ASME Boiler & Pressure Vessel Code VIII Div 2– An International Code[S]. New York: The American Society of Mechanical Engineers, 2007.
|
Bureau Veritas Marine & Offshore Division. Guide for application of the mesh insensitive methodology-welded steel plates of ship and offshore structures: NT 3199[S]. Paris: Bureau Veritas, 2013.
|
兆文忠, 李向伟, 董平沙. 焊接结构抗疲劳设计论与方法[M]. 北京: 机械工业出版社, 2017.
Zhao Wenzhong, Li Xiangwei, Dong Pingsha. Theory and method of anti-fatigue design of welded structure [M]. Beijing: China Machine Press, 2017.
|
李想, 邓彩艳, 龚宝明, 等. 5A06铝合金焊接接头在超长寿命区间的疲劳性能[J]. 焊接学报, 2016, 37(2): 59 − 62.
Li Xiang, Deng Caiyan, Gong Baoming, et al. Super-long life fatigue property of 5A06 aluminum alloy welded joint[J]. Transactions of the China welding institution, 2016, 37(2): 59 − 62.
|
邓彩艳, 高仁, 龚宝明, 等. 7050铝合金搅拌摩擦焊接头超高周疲劳性能[J]. 焊接学报, 2018, 39(11): 114 − 118. doi: 10.12073/j.hjxb.2018390284
Deng Caiyan, Gao Ren, Gong Baoming, et al. Research on ultra-high-cycle fatigue properties of 7050 aluminum alloy FSW welded joints[J]. Transactions of the China Welding Institution, 2018, 39(11): 114 − 118. doi: 10.12073/j.hjxb.2018390284
|
张若凡. 铝合金搅拌摩擦焊接头局部力学性能及超长寿命疲劳行为[D]. 成都: 西华大学, 2020.
Zhang Ruofan. Mechanical properties and very high cycle fatigue behavior of aluminum alloy friction stir welded joints[D] . Chengdu: Xihua University, 2020.
|
He Chao, Kitamura K, Yang Kun, et al. Very high cycle fatigue crack initiation mechanism in nugget zone of AA 7075 friction stir welded joint[J]. Advances in Materials Science and Engineering, 2017, 2017: 1 − 10.
|
Deng Caiyan, Gao Ren, Gong Baoming, et al. Correlation between micro-mechanical property and very high cycle fatigue (VHCF) crack initiation in friction stir welds of 7050 aluminum alloy[J]. International Journal of Fatigue, 2017, 104: 283 − 292. doi: 10.1016/j.ijfatigue.2017.07.028
|
He Chao, Liu Yongjie, Dong Jiangfeng, et al. Fatigue crack initiation behaviors throughout friction stir welded joints in AA7075-T6 in ultrasonic fatigue[J]. International Journal of Fatigue, 2015, 81: 171 − 178. doi: 10.1016/j.ijfatigue.2015.07.012
|
He Chao, Liu Yongjie, Dong Jiangfeng, et al. Through thickness property variations in friction stir welded AA6061 joint fatigued in very high cycle fatigue regime[J]. International Journal of Fatigue, 2016, 82: 379 − 386. doi: 10.1016/j.ijfatigue.2015.08.013
|
张伟, 王弘. 6005A铝合金激光-MIG复合焊接接头超高周疲劳性能试验研究[J]. 电焊机, 2017, 47(12): 94 − 98.
Zhang Wei, Wang Hong. Experimental study on the ultrahigh cycle fatigue properties of laser-MIG welded joints of 18 mm 6005A aluminum alloy[J]. Electric Welding Machines, 2017, 47(12): 94 − 98.
|
Deng Caiyan, Wang Hong, Gong Baoming, et al. Effects of microstructural heterogeneity on very high cycle fatigue properties of 7050-T7451 aluminum alloy friction stir butt welds[J]. International Journal of Fatigue, 2016, 83: 100 − 108. doi: 10.1016/j.ijfatigue.2015.10.001
|
高仁. 不同应力比下铝合金搅拌摩擦焊接头超高周疲劳性能[D]. 天津: 天津大学, 2018.
Gao Ren. Very-high-cycle fatigue properties of friction stir welded aluminum alloy under various stress ratios [D]. Tianjin: Tianjin University, 2018.
|
李想. 铝合金FSW焊接接头超高周疲劳性能研究[D]. 天津: 天津大学, 2014.
Li Xiang. Study on very high cycle fatigue of aluminum alloy FSW welding joint [D] . Tianjin: Tianjin University, 2014.
|
Sonsino, Cetin M. Course of S-N curves especially in the high-cycle fatigue regime with regard to component design and safety[J]. International Journal of Fatigue, 2007, 29: 2246 − 2258. doi: 10.1016/j.ijfatigue.2006.11.015
|
[1] | WEI Deqiang, REN Xulong, WANG Rong, LV Shaopeng. Microstructure and hardness of W alloy on 45 steel by electron beam scanning[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(2): 98-103. DOI: 10.12073/j.hjxb.2019400050 |
[2] | WANG Hongna, YAN Yanfu, MA Shitao, QI Xuefeng, LIU Shuying. Effect of rare earth element (La,Nb) on hardness of Ti15Cu15Ni filler metal and shear strength of TC4 joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(11): 99-103. |
[3] | LEI Yucheng, LI Zhennan, ZHU Yanshan, JU Xin. Analysis of residual stress and hardness of T-joint on China low activation martensitic steel laser weld[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (6): 73-76. |
[4] | QU Yuebo, CAI Zhipeng, CHE Hongyan, PAN Jiluan. Effect on hardness and microstructures of rail joint with narrow gap arc welding by normalizing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (7): 25-29. |
[5] | LEI Yucheng, HAN Mingjuan, ZHU Qiang, JU Xin. Microstructure and hardness of laser welded joint of China low activation martensitic steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (1): 5-8. |
[6] | LEI Yucheng, GU Kangjia, ZHU Qiang, CHEN Xizhang, JU Xin, CHANG Fenghua. Hardness and microstructure of China low activation martensitic steel fusion welded joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (11): 9-12. |
[7] | LI Haitao, CHEN Furong, HU Yanhua, XIE Ruijun. Effects of peak temperature of welding thermal circle on hardness of 10CrMo910[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (2): 75-78. |
[8] | ZHANG Guifeng, MIAO Huixia, ZHANG Jianxun, PEI Yi, WANG Jian, ZHANG Yantao. Effects of immediate water cooling and normalization after welding on microstructure and hardness of heat affected zone of ultra-fine grain steels welded joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (12): 47-50. |
[9] | Liu Zhengjun, Lin Kegung, Liu Bingshan, Sun Bo. Remelting Harding for Inter Surfacing of Thick Oil Pump[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1998, (3): 9-14. |
[10] | Sun Weilong, Tang Muyao, Zhou Lixia. Prediction of microstructure and haroness in microalloyed steel HAZ by aid of computer[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1992, (3): 146-155. |
1. |
吴泓羲,钟佳宏,何小均,袁小平. 基于船用涡轮增压器焊接涡轮设计参数的仿真分析研究. 内燃机与配件. 2024(19): 21-23 .
![]() |