Advanced Search
LI Xiangwei, FANG Ji, ZHAO Shangchao. Master S-N curve fitting method of welded structure and software development[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(1): 80-85. DOI: 10.12073/j.hjxb.20191018001
Citation: LI Xiangwei, FANG Ji, ZHAO Shangchao. Master S-N curve fitting method of welded structure and software development[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(1): 80-85. DOI: 10.12073/j.hjxb.20191018001

Master S-N curve fitting method of welded structure and software development

More Information
  • Received Date: October 17, 2019
  • Available Online: July 12, 2020
  • The main S-N curve method is a new method to calculate the fatigue life of welded structures. It is widely used in the fatigue analysis of welded structures. The equivalent structural stress is taken as the key parameter to calculate the fatigue life of structures with different loading modes and welding forms by single one S-N curve. Based on the principle of the master S-N curve method, a database of welded structure was created through different materials and welding forms of fatigue test. The effects of correction parameters such as thickness, bending ratio and multi-axial stress were taken into concern to study the different master S-N curve equations fitting method and its standard deviation base on the principle of least squares method. The special software for the master S-N curve fitting method was developed. Based on VC++ programming environment the main calculation functions of nominal stress, structural stress, equivalent structural stress, shear structural stress, multi-axial structural stress and initial crack correction were compiled. The multi parameter comparative analysis of the test data was completed in this software. It provides a technical basis for the study of fatigue life assessment and influencing factors analysis of welded structures.
  • 王举金, 阳光武, 杨冰, 等. 基于结构应力法的环焊结构S-N曲线分析[J]. 焊接学报, 2019, 40(8): 63 − 68.

    Wang Jujin, Yang Guangwu, Yang Bing, et al. S-N curve analysis of ring welding based on structural stress method[J]. Transactions of the China Welding Institution, 2019, 40(8): 63 − 68.
    兆文忠, 魏鸿亮, 方吉, 等. 基于主S-N曲线法的焊接结构虚拟疲劳试验理论与应用[J]. 焊接学报, 2014, 35(5): 75 − 78.

    Zhao Wenzhong, Wei Hongliang, Fang Ji, et al. The theory and application of the virtual fatigue test of welded structures based on the master S-N curve method[J]. Transactions of the China Welding Institution, 2014, 35(5): 75 − 78.
    Mojgan Y, Mohammad M, Abbas S M. Master S-N curve approach to fatigue prediction of breathing web panels[J]. Journal of Constructional Steel Research, 2017, 128(1): 789 − 799.
    Sheafi E M, Tanner K E. Effects of specimen variables and stress amplitude on the S-N analysis of two PMMA based bone cements[J]. International Journal of Fatigue, 2017, 105: 119 − 127. doi: 10.1016/j.ijfatigue.2017.08.019
    Ashish A, Sudath C, Siriwar D, et al. A new nonlinear fatigue damage model based only on S-N curve parameters[J]. International Journal of Fatigue, 2017, 103: 327 − 341. doi: 10.1016/j.ijfatigue.2017.06.017
    Grzegorz S, Bogdan L. Analysis of a simplified method for determining fatigue charts ΔS-N on the example of welded and soldered connectors[J]. Polish Maritime Research, 2018, 25(2): 92 − 99. doi: 10.2478/pomr-2018-0059
    Dong P, Song S, Pei X. An IIW residual stress profile estimation scheme for girth welds in pressure vessel and piping components[J]. Welding in the World, 2016, 60(2): 283 − 298. doi: 10.1007/s40194-015-0286-4
    Xing S, Dong P, Threstha A. Analysis of fatigue failure mode transition in load-carrying fillet-welded connections[J]. Marine Structures, 2016, 46: 102 − 126. doi: 10.1016/j.marstruc.2016.01.001
    Dong P. A structural stress definition and numerical implementation for fatigue analysis of welded joints[J]. International Journal of Fatigue, 2001, 23(10): 865 − 876. doi: 10.1016/S0142-1123(01)00055-X
    Xing S, Dong P. An analytical SCF solution method for joint misalignments and application in fatigue test data interpretation[J]. Marine Structures, 2016, 50: 143 − 161. doi: 10.1016/j.marstruc.2016.07.006
    Dong P, Hong J K, Jesus A. Analysis of recent fatigue data using the structural stress procedure in ASME Div 2 rewrite[J]. Journal of Pressure Vessel Technology, 2007, 129(3): 253 − 261.
    Xiao Z, Feng D, Ling X, et al. State filtering-based least squares parameter estimation for bilinear systems using the hierarchical identification principle[J]. IET Control Theory & Applications, 2018, 12(12): 1704 − 1713.
    Gould N I, Rees T, Scott J A. Convergence and evaluation-complexity analysis of a regularized Tensor-Newton method for solving nonlinear least-squares problems[J]. Computational Optimization and Applications, 2019, 73(1): 1 − 35. doi: 10.1007/s10589-019-00064-2
    Jung I H, Zhu Z, Kim J, et al. Recent progress on the fact sage thermodynamic database for new Mg alloy development[J]. The Journal of the Minerals, Metals & Materials Society, 2017, 69(6): 1052 − 1059.
    Gessert F, Wingerath W, Friedrich S, et al. NoSQL database systems: a survey and decision guidance[J]. Computer Science - Research and Development, 2017, 32(4): 353 − 365.
  • Related Articles

    [1]HOU Yujie, HAN Hongbiao, YANG Xin, ZHENG Guangzhen. Development of a closed loop control system for discharge parameters of electric spark deposition[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(9): 53-59. DOI: 10.12073/j.hjxb.20221122003
    [2]LI Mengnan, HAN Hongbiao, LI Shikang, HOU Yujie. Effect of rotating electrode contact force on discharge parameters and material transfer in electric-spark deposition[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(1): 71-77. DOI: 10.12073/j.hjxb.20220206001
    [3]WANG Shun, HAN Hongbiao, LI Shikang, LI Mengnan. Analysis of the influence of cylindrical electrode parameters on electro-spark deposition quality based on orthogonal experiment[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(7): 37-43. DOI: 10.12073/j.hjxb.20210131002
    [4]WANG Shun, TONG Jinzhong, HAN Hongbiao. An automatic control device of contact force for electro-spark deposition and deposition test[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(3): 42-47. DOI: 10.12073/j.hjxb.20201108001
    [5]HAN Hongbiao, GUO Jingdi, JIAO Wenqing. Discharge mechanism of electro-spark deposition with rotary electrode[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(5): 67-72. DOI: 10.12073/j.hjxb.2019400129
    [6]CHU Weishen, LIN Tiesong, HE Peng, WEI Hongmei, DAI Dengfeng. Numerical simulation of stress field on WC-12Co coating by consecutive electro spark deposition[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(2): 71-74.
    [7]WEI Hongmei, CHU Weishen, LIN Tiesong, HE Peng. Numerical simulation of temperature field of WC-12Co coating by monopoles electro spark deposition[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(3): 35-38.
    [8]GAO Ying, HAN Jinghua, LOU Liyan, LI Huan. Influence of electrode pressure on Cr12MoV electric-spark depositing YG6 process[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(1): 45-48.
    [9]GAO Yuxin, ZHAO Cheng, YI Jian. Analysis on WC-8Co electro-spark deposition coating with powder presetting method[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (3): 49-52.
    [10]ZHANG Ping, MA Lin, LIANG Zhijie, ZHANG Erliang. Technique of nickel-based alloy coating produced by hand electric-spark depositing process[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (4): 33-36.

Catalog

    Article views (469) PDF downloads (32) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return