Advanced Search
WANG Zhifeng, CHEN Peiyin, WU Wei, CHEN Yan, ZHANG Jianmin, Bao Heng. Finite element simulation of temperature field for submerged arc strip overlaying on thick plate[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (1): 89-92.
Citation: WANG Zhifeng, CHEN Peiyin, WU Wei, CHEN Yan, ZHANG Jianmin, Bao Heng. Finite element simulation of temperature field for submerged arc strip overlaying on thick plate[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (1): 89-92.

Finite element simulation of temperature field for submerged arc strip overlaying on thick plate

More Information
  • Received Date: June 10, 2008
  • A thermal source for submerged arc overlaying is designed based on its principle and heat source model of Goldak, and a fortran subroutine is compiled to implement the translation of thermal source in the FEA software MSC.MARC. Finite element simulation of temperature field of submerged arc strip overlaying on thick plate was established. The simulation results are in good accordance with the actual thermal cycle curve, which proved the model is correct.
  • Related Articles

    [1]FENG Chao, ZHAO Lei, XU Lianyong, HAN Yongdian. Investigation on fatigue life prediction approach of welded joints via integrated data-driven method[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(11): 8-13, 51. DOI: 10.12073/j.hjxb.20221116002
    [2]WEI Guoqian, GUO Zixian, YAN Mengyu, ZHAO Gang. Pavlou approach based fatigue life prediction for welded structures[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(9): 16-23. DOI: 10.12073/j.hjxb.20221201001
    [3]WEI Wei, SUN Yang, ZHAO Xingming, CHEN Minghua, ZOU Li, YANG Xinhua. A rapid fatigue life prediction model of butt joints based on energy dissipation[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(8): 91-97. DOI: 10.12073/j.hjxb.20220929005
    [4]CHEN Bingzhi, HE Zhengping, LI Xiangwei, ZHAO Wenzhong. Comparison of fatigue life predicting methods used in cracked welded component[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(5): 63-68. DOI: 10.12073/j.hjxb.20210824001
    [5]ZHAO Lei, FENG Guocai, XU Lianyong, HAN Yongdian, JING Hongyang. Creep-fatigue properties and life prediction method of new martensitic heat resistant steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(5): 1-7. DOI: 10.12073/j.hjxb.20220101003
    [6]KONG Da, ZHANG Liang, YANG Fan. Fatigue life prediction of SnAgCu-X solder joints based on Anand model[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(4): 17-21. DOI: 10.12073/j.hjxb.20170404
    [7]LI Xuepeng, SHANG Deguang, ZHOU Jianwei, BAO Ming. Prediction of fatigue life based on change of natural frequency and load characteristic for spot welded joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (5): 85-88.
    [8]ZHANG Liang, XUE Songbai, HAN Zongjie, LU Fangyan, YU Shenglin, LAI Zhongmin. Fatigue life prediction of SnAgCu soldered joints of FCBGA device[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (7): 85-88.
    [9]Lü Baotong, Zheng Xiulin. Fatigue life prediction for butt welds of 30CrMnSiNi2A steel containing welding delect[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1994, (4): 241-247.
    [10]Lu Baotong, Cui Tianxie, Zheng Xiulin. Effect of structural details on fatigue resistance of 16Mn steel butt welds[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1993, (2): 117-124.

Catalog

    Article views (307) PDF downloads (96) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return