Citation: | WEI Guoqian, GUO Zixian, YAN Mengyu, ZHAO Gang. Pavlou approach based fatigue life prediction for welded structures[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(9): 16-23. DOI: 10.12073/j.hjxb.20221201001 |
成立夫, 魏国前, 胡珂, 等. 基于FIP的焊趾短裂纹行为仿真[J]. 焊接学报, 2020, 41(12): 7 − 12. doi: 10.12073/j.hjxb.20200520001
Cheng Lifu, Wei Guoqian, Hu Ke, et al. Simulation of short crack behavior of welding toe based on FIP[J]. Transactions of the China Welding Institution, 2020, 41(12): 7 − 12. doi: 10.12073/j.hjxb.20200520001
|
刘苏超, 姜长杰, 刘新田. 基于强度退化的金属材料疲劳寿命预估[J]. 机械强度, 2021, 43(3): 742 − 746. doi: 10.16579/j.issn.1001.9669.2021.03.033
Liu Suchao, Jiang Changjie, Liu Xintian. Fatigue life prediction of metal materials based on strength degradation[J]. Journal of Mechanical Strength, 2021, 43(3): 742 − 746. doi: 10.16579/j.issn.1001.9669.2021.03.033
|
Manson S S, Halford G R. Practical implementation of the double linear damage rule and damage curve approach for treating cumulative fatigue damage[J]. International Journal of Fracture, 1981, 17(2): 169 − 192. doi: 10.1007/BF00053519
|
薛齐文, 杜秀云, 王生武. 基于载荷加载次序的疲劳寿命预测改进模型[J]. 中国铁道科学, 2019, 40(1): 88 − 93. doi: 10.3969/j.issn.1001-4632.2019.01.12
Xue Qiwen, Du Xiuyun, Wang Shengwu. Improved fatigue life prediction model based on loading sequence[J]. China Railway Science, 2019, 40(1): 88 − 93. doi: 10.3969/j.issn.1001-4632.2019.01.12
|
Gao K, Tang W, Liu G. An improved Manson-Halford model for multi-level nonlinear fatigue life prediction[J]. International Journal of Fatigue, 2021, 151: 106393. doi: 10.1016/j.ijfatigue.2021.106393
|
洪海铭, 詹志新, 王佳莹. 基于损伤力学的增材制造金属材料疲劳寿命预测[J]. 北京航空航天大学学报, 2022, 48(6): 950 − 956. doi: 10.13700/j.bh.1001-5965.2020.0722
Hong Haiming, Zhan Zhixin, Wang Jiaying. Fatigue life prediction of metal materials manufactured by additive based on damage mechanics[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(6): 950 − 956. doi: 10.13700/j.bh.1001-5965.2020.0722
|
Stanisław M. Energy-based method of fatigue damage cumulation[J]. International Journal of Fatigue, 2019, 121: 73 − 83. doi: 10.1016/j.ijfatigue.2018.12.008
|
Subramanyan S. A cumulative damage rule based on the knee point of the S-N curve[J]. Journal of Engineering Materials and Technology, 1976, 98(4): 316 − 321. doi: 10.1115/1.3443383
|
Hashin Z, Rotem A. A cumulative damage theory of fatigue failure[J]. Materials Science and Engineering, 1978, 34(2): 147 − 160. doi: 10.1016/0025-5416(78)90045-9
|
Pavlou D G. The theory of the S-N fatigue damage envelope: Generalization of linear, double-linear, and non-linear fatigue damage models[J]. International Journal of Fracture, 2018, 110: 204 − 214.
|
Murugan R, Venugobal R P, Ramaswami P T, et al. Studies on the effect of weld defect on the fatigue behavior of welded structures[J]. China Welding, 2018, 27(1): 53 − 59.
|
陈秉智, 何正平, 李向伟, 等. 某构件焊缝疲劳开裂的寿命预测方法应用对比[J]. 焊接学报, 2022, 43(5): 63 − 68. doi: 10.12073/j.hjxb.20210824001
Chen Bingzhi, He Zhengping, Li Xiangwei, et al. Comparison of life prediction methods for fatigue cracking of welded joints of a member[J]. Transactions of the China Welding Institution, 2022, 43(5): 63 − 68. doi: 10.12073/j.hjxb.20210824001
|
The British Standards Institution, BS 7608: 2014. Standard B, Guide to fatigue design and assessment of steel products[S]. London: BSI, 2014.
|
王苹, 裴宪军, 钱宏亮, 等. 焊接结构抗疲劳设计新方法与应用[J]. 机械工程学报, 2021, 57(16): 349 − 360. doi: 10.3901/JME.2021.16.349
Wang Ping, Pei Xianjun, Qian Hongliang, et al. New fatigue design method and application of welded structures[J]. Journal of Mechanical Engineering, 2021, 57(16): 349 − 360. doi: 10.3901/JME.2021.16.349
|
1. |
樊炳倩,沈闲. 激光选区熔化参数对热物理过程影响数学模型分析. 激光杂志. 2025(01): 222-227 .
![]() | |
2. |
袁健,何斌,张俊飞,陈国炎,张锁荣. 纳秒激光参数对316L不锈钢沟槽结构加工的影响. 金属加工(热加工). 2024(05): 61-66 .
![]() |