Advanced Search
WEI Guoqian, GUO Zixian, YAN Mengyu, ZHAO Gang. Pavlou approach based fatigue life prediction for welded structures[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(9): 16-23. DOI: 10.12073/j.hjxb.20221201001
Citation: WEI Guoqian, GUO Zixian, YAN Mengyu, ZHAO Gang. Pavlou approach based fatigue life prediction for welded structures[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(9): 16-23. DOI: 10.12073/j.hjxb.20221201001

Pavlou approach based fatigue life prediction for welded structures

More Information
  • Received Date: November 30, 2022
  • Available Online: July 16, 2023
  • Fatigue life prediction under variable amplitude loading is an important issue in the integrity analysis of welded structures. Based on the fatigue damage zone concept proposed by Pavlou and the S-N curve recommended in BS7608 standard, an approach to predict fatigue lives of welded structures was realized by FEA heat transfer problem. Fatigue tests under two-level tensile loading block sequences were conducted for load-carrying cruciform welded joints, non-load- carrying cruciform welded joints and butt welded joints, respectively. The fatigue lives of the specimens were estimated according to Miner model, M-H model and Pavlou method. Results showed that the Pavlou method had higher prediction accuracy with more uniform distribution in the error scatter diagram of predicted life versus test life, which validated the rationality and effectiveness of the proposed method. Moreover, the influence of S-N curve survival probability on the life prediction accuracy is discussed. The S-N curve with 2.3% survival probability is suggested to be utilized to obtain satisfactory prediction results.
  • 成立夫, 魏国前, 胡珂, 等. 基于FIP的焊趾短裂纹行为仿真[J]. 焊接学报, 2020, 41(12): 7 − 12. doi: 10.12073/j.hjxb.20200520001

    Cheng Lifu, Wei Guoqian, Hu Ke, et al. Simulation of short crack behavior of welding toe based on FIP[J]. Transactions of the China Welding Institution, 2020, 41(12): 7 − 12. doi: 10.12073/j.hjxb.20200520001
    刘苏超, 姜长杰, 刘新田. 基于强度退化的金属材料疲劳寿命预估[J]. 机械强度, 2021, 43(3): 742 − 746. doi: 10.16579/j.issn.1001.9669.2021.03.033

    Liu Suchao, Jiang Changjie, Liu Xintian. Fatigue life prediction of metal materials based on strength degradation[J]. Journal of Mechanical Strength, 2021, 43(3): 742 − 746. doi: 10.16579/j.issn.1001.9669.2021.03.033
    Manson S S, Halford G R. Practical implementation of the double linear damage rule and damage curve approach for treating cumulative fatigue damage[J]. International Journal of Fracture, 1981, 17(2): 169 − 192. doi: 10.1007/BF00053519
    薛齐文, 杜秀云, 王生武. 基于载荷加载次序的疲劳寿命预测改进模型[J]. 中国铁道科学, 2019, 40(1): 88 − 93. doi: 10.3969/j.issn.1001-4632.2019.01.12

    Xue Qiwen, Du Xiuyun, Wang Shengwu. Improved fatigue life prediction model based on loading sequence[J]. China Railway Science, 2019, 40(1): 88 − 93. doi: 10.3969/j.issn.1001-4632.2019.01.12
    Gao K, Tang W, Liu G. An improved Manson-Halford model for multi-level nonlinear fatigue life prediction[J]. International Journal of Fatigue, 2021, 151: 106393. doi: 10.1016/j.ijfatigue.2021.106393
    洪海铭, 詹志新, 王佳莹. 基于损伤力学的增材制造金属材料疲劳寿命预测[J]. 北京航空航天大学学报, 2022, 48(6): 950 − 956. doi: 10.13700/j.bh.1001-5965.2020.0722

    Hong Haiming, Zhan Zhixin, Wang Jiaying. Fatigue life prediction of metal materials manufactured by additive based on damage mechanics[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(6): 950 − 956. doi: 10.13700/j.bh.1001-5965.2020.0722
    Stanisław M. Energy-based method of fatigue damage cumulation[J]. International Journal of Fatigue, 2019, 121: 73 − 83. doi: 10.1016/j.ijfatigue.2018.12.008
    Subramanyan S. A cumulative damage rule based on the knee point of the S-N curve[J]. Journal of Engineering Materials and Technology, 1976, 98(4): 316 − 321. doi: 10.1115/1.3443383
    Hashin Z, Rotem A. A cumulative damage theory of fatigue failure[J]. Materials Science and Engineering, 1978, 34(2): 147 − 160. doi: 10.1016/0025-5416(78)90045-9
    Pavlou D G. The theory of the S-N fatigue damage envelope: Generalization of linear, double-linear, and non-linear fatigue damage models[J]. International Journal of Fracture, 2018, 110: 204 − 214.
    Murugan R, Venugobal R P, Ramaswami P T, et al. Studies on the effect of weld defect on the fatigue behavior of welded structures[J]. China Welding, 2018, 27(1): 53 − 59.
    陈秉智, 何正平, 李向伟, 等. 某构件焊缝疲劳开裂的寿命预测方法应用对比[J]. 焊接学报, 2022, 43(5): 63 − 68. doi: 10.12073/j.hjxb.20210824001

    Chen Bingzhi, He Zhengping, Li Xiangwei, et al. Comparison of life prediction methods for fatigue cracking of welded joints of a member[J]. Transactions of the China Welding Institution, 2022, 43(5): 63 − 68. doi: 10.12073/j.hjxb.20210824001
    The British Standards Institution, BS 7608: 2014. Standard B, Guide to fatigue design and assessment of steel products[S]. London: BSI, 2014.
    王苹, 裴宪军, 钱宏亮, 等. 焊接结构抗疲劳设计新方法与应用[J]. 机械工程学报, 2021, 57(16): 349 − 360. doi: 10.3901/JME.2021.16.349

    Wang Ping, Pei Xianjun, Qian Hongliang, et al. New fatigue design method and application of welded structures[J]. Journal of Mechanical Engineering, 2021, 57(16): 349 − 360. doi: 10.3901/JME.2021.16.349
  • Related Articles

    [1]ZHOU Xin, HUANG Ruisheng, LIANG Xiaomei, TENG Bin. Analysis of in-situ heat treatment on microstructure and mechanical properties by quadruple-electrode gas tungsten arc additive manufacturing of 00Cr13Ni5Mo stainless steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION. DOI: 10.12073/j.hjxb.20240202001
    [2]ZHENG Wenjian, LI Zhengyang, WANG Xinghua, GONG Xuhui, YAN Dejun, LAI Shaobo, YANG Jianguo. Effect of heat conduction mode on microstructure and properties of 800 MPa class marine high strength steel fabricated by wire arc additive manufacturing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(5): 38-46. DOI: 10.12073/j.hjxb.20230605004
    [3]XU Junqiang, PENG Yong, LIU Zhihui, ZHOU Qi, KONG Jian. Study on plasma arc additive manufacturing process of dissimilar steels with various composite structures[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(11): 119-124. DOI: 10.12073/j.hjxb.2019400298
    [4]HE Jie, FENG Yuehai, ZHANG Lin, ZHAN Bin. Research on microstructure and mechanical properties of high strength Al-Mg alloy fabricated by double-wire and gas tungsten arc additive manufacturing process[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(7): 109-113. DOI: 10.12073/j.hjxb.2019400191
    [5]ZHAN Bin, FENG Yuehai, HE Jie, LIU Siyu. Research on fabrication and microstructure between carbon steel double wire and single wire plasma arc additive manufacturing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(6): 77-81. DOI: 10.12073/j.hjxb.2019400158
    [6]QIU Ranfeng1,2, LI Qingzhe1, SHI Hongxin1,2, SATONAKA Shinobu3. Resistance spot welding of titanium and mild steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(4): 45-48. DOI: 10.12073/j.hjxb.2018390093
    [7]WANG Peng, XIE Pu, ZHAO Haiyan, GUAN Qiao. Fundamental research of welding plastic strain evolution process:Characteristics and law of evolution process of welding plastic strain in mild steel,stainless steel and titanium alloy thin plate[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (12): 63-66.
    [8]ZHANG Huajun, ZHANG Guangjun, WANG Junheng, WU Lin. Effect of thermal cycles of DSAW on microstructure in low alloy high strength steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (10): 81-84.
    [9]ZHANG Rui hua, FAN Ding, YU Shu rong. Study activating flux for mild steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2003, (2): 16-18.
    [10]Li Wushen, Chang Yiquan, Zhang Bingfan. SMAW expert system for mild and alloyed structural steels[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1994, (3): 197-202.
  • Cited by

    Periodical cited type(2)

    1. 樊炳倩,沈闲. 激光选区熔化参数对热物理过程影响数学模型分析. 激光杂志. 2025(01): 222-227 .
    2. 袁健,何斌,张俊飞,陈国炎,张锁荣. 纳秒激光参数对316L不锈钢沟槽结构加工的影响. 金属加工(热加工). 2024(05): 61-66 .

    Other cited types(2)

Catalog

    Article views (221) PDF downloads (89) Cited by(4)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return