Advanced Search
Tian Xitang, Gu Fuming, Gao Jinqiang. Welding Deformations due to Circular Welds in Large Cylindrical Shells[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1997, (1): 31-36.
Citation: Tian Xitang, Gu Fuming, Gao Jinqiang. Welding Deformations due to Circular Welds in Large Cylindrical Shells[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1997, (1): 31-36.

Welding Deformations due to Circular Welds in Large Cylindrical Shells

More Information
  • Received Date: March 17, 1996
  • Revised Date: November 28, 1996
  • Welding deformations due to circular welds in the large cylindrical shell is studied by the model test and numerical analysis.The result shows that the inclination of the flange's plane is induced by the circular weld at the joint between the cylindrical shell and the flange.The effect of the circular welds between the small cylindrical shells and the large cylindrical shell on the flange's plane is not obvious, but it induces the partial concave of the flange's plane in the circumference.The inclination slop of the flange's plane, which is induced by the circumferential weld at the joint between the actual vacuum vessel and the flange, is analysed by FEM.FEM result coincides well with the value which is analyzed by the model test.
  • Related Articles

    [1]MA Yiming, GUO Xiao, HAN Ying, JIANG Yinglong, LIU Zicheng, GAN Hongfeng, SONG Changhong. Influence mechanism of heat input on the low-temperature impact toughness of the coarse grain heat affected zone of ultra-strength steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(12): 90-98. DOI: 10.12073/j.hjxb.20240709003
    [2]HUANG Yong, GUO Wei, WANG Yanlei. Effects of introductions of oxygen and nitrogen elements on impact toughness of gas pool coupled activating TIG weld metal[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(5): 83-89. DOI: 10.12073/j.hjxb.20210919001
    [3]WANG Dongpo, LIU Kaiyue, DENG Caiyan, GONG Baoming, WU Shipin, XIAO Na. Effects of PWHT on the impact toughness and fracture toughness of the weld metal under restraint welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(8): 63-67, 78. DOI: 10.12073/j.hjxb.20190914001
    [4]CAO Rui, YANG Zhaoqing, LI Jinmei, LEI Wanqing, ZHANG Jianxiao, CHEN Jianhong. Influence of fraction of coarse-grained heat affected zone on impact toughness for 09MnNiDR welded joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(5): 7-13. DOI: 10.12073/j.hjxb.20190818003
    [5]DU Bing, SUN Fenglian, XU Yujun, LI Xiaoyu, LÜ Xiaochun, QIN Jian. Effect of welding methods on impact toughness of ultra-low carbon martensitic stainless steel welding wire deposited metal[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(8): 1-4.
    [6]HU Jie, JIANG Zhizhong, HUANG Jihua, CHEN Shuhai, ZHAO Xingke, ZHANG Hua. Effects of heat treatment processes on microstructure and impact toughness of weld metal of vacuum electron beam welding on CLAM steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (11): 67-71.
    [7]LIANG Guoli, YANG Shanwu, WU Huibin, LIU Xueli. Impact toughness of simulated CGHAZ with high heat input for adding trace Zr oil tank steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (11): 85-88.
    [8]XUE Gang, ZHAO Fuchen, JING Yanhong, NIU Jicheng, ZHANG Yonghui, GAI Dengyu. Effect of carbon on impact toughness of metal deposited with high strength austenite electrodes[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (8): 89-92.
    [9]ZHANG Lihong, CHEN Furong. Welding of low-temperature steel 07MnNiCrMoVDR and its low-temperature impact toughness[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (6): 68-72.
    [10]Ma Jin. EFFECT OF TRACE BORON ON IMPACT TOUGHNESS[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1988, (3): 155-161.

Catalog

    Article views (200) PDF downloads (270) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return