Advanced Search
MA Yiming, GUO Xiao, HAN Ying, JIANG Yinglong, LIU Zicheng, GAN Hongfeng, SONG Changhong. Influence mechanism of heat input on the low-temperature impact toughness of the coarse grain heat affected zone of ultra-strength steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(12): 90-98. DOI: 10.12073/j.hjxb.20240709003
Citation: MA Yiming, GUO Xiao, HAN Ying, JIANG Yinglong, LIU Zicheng, GAN Hongfeng, SONG Changhong. Influence mechanism of heat input on the low-temperature impact toughness of the coarse grain heat affected zone of ultra-strength steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(12): 90-98. DOI: 10.12073/j.hjxb.20240709003

Influence mechanism of heat input on the low-temperature impact toughness of the coarse grain heat affected zone of ultra-strength steel

More Information
  • Received Date: July 08, 2024
  • Available Online: December 25, 2024
  • To investigate the essential reasons for the effect of heat input on the low-temperature impact toughness of the CGHAZ of Ultra-strength steel, the CGHAZ simulation specimens were prepared by using the thermal simulation. Combined with the instrumented impact test and the quantitative characterization methods of microstructure by OM and EBSD, the influence of microstructure and grain size on impact toughness was analyzed. The results show that with the increase of heat input, the content of microstructure changes significantly in the range of 27 - 53 kJ/cm; the PAG grows rapidly in the range of 30 - 40 kJ/cm; the frequency of HAGB increases rapidly and the diameter of EG decreases rapidly in the range of 50 - 60 kJ/cm. When the heat input is 10 kJ/cm, brittle fracture occurs; when the heat input is 30 and 100 kJ/cm, ductile fracture occurs; when the heat input is 40 and 50 kJ/cm, it is in the transition state of ductile-brittle fracture. When the heat input is in the range of 10 - 30 kJ/cm and 60 - 100 kJ/cm, the low-temperature impact toughness of CGHAZ is mainly affected by the content of microstructure; when the heat input is in the range of 30 - 60 kJ/cm, the main influencing factors of the low-temperature impact toughness of CGHAZ change from the diameter of PAG to the frequency of HAGB and the diameter of EG.

  • [1]
    Li C S, Chen J, Tu X Y, et al. Effect of finish rolling temperature on microstructures and mechanical properties of 1000 MPa grade tempered steel plate for hydropower station[J]. Journal of Manufacturing Processes, 2021, 67: 1 − 11. doi: 10.1016/j.jmapro.2021.04.039
    [2]
    康丹丹, 万天明, 王高见, 等. 不同热输入对 1000 MPa级水电工程用高强钢B950CF焊接接头组织及力学性能的影响研究[J]. 热加工工艺, 2018, 47(17): 221 − 224.

    Kang Dandan, Wan Tianming, Wang Gaojian, et al. Effect of heat input on microstructure and mechanical properties of welded joint of 1000 MPa high-strength steel B950CF for hydropower engineering[J]. Hot Working Technology, 2018, 47(17): 221 − 224.
    [3]
    Chen J, Li C S, Ren J Y, et al. Evaluation of microstructure and mechanical properties of Fe-1.2Mn-0.3Cr-1.4Ni-0.4Mo-C steel welded joints[J]. Journal of Materials Research and Technology, 2020, 9(6): 13793 − 13800. doi: 10.1016/j.jmrt.2020.09.135
    [4]
    You Y, Shang C J, Nie W J, et al. Investigation on the microstructure and toughness of coarse grained heat affected zone in X-100 multi-phase pipeline steel with high Nb content[J]. Materials Science and Engineering: A, 2012, 558: 692 − 701.
    [5]
    朱海山, 徐连勇, 曹健, 等. t8/5对X100管线钢热影响区粗晶区断裂韧性的影响[J]. 焊接, 2021(3): 5 − 12. doi: 10.12073/j.hj.20201106002

    Zhu Haishan, Xu Lianyong, Cao Jian, et al. Effect of t8/5 on fracture toughness of CGHAZ of X100 pipeline steel[J]. Welding & Joining, 2021(3): 5 − 12. doi: 10.12073/j.hj.20201106002
    [6]
    Wang X L, Xie Z J, Wang, Z Q, et al. Crystallographic study on microstructure and impact toughness of coarse grained heat affected zone of ultra-high strength steel[J]. Materials Letters, 2022, 323: 132552. doi: 10.1016/j.matlet.2022.132552
    [7]
    Zhang Y Q, Zhang H Q, Li J F, et al. Effect of heat input on microstructure and toughness of coarse grain heat affected zone in Nb microalloyed HSLA steels[J]. Journal of Iron and Steel Research International, 2009, 16(5): 73 − 80.
    [8]
    鲍亮亮, 潘春宇, 刘福建, 等. 低合金高强钢激光电弧复合焊热模拟热影响区组织与冲击韧性[J]. 焊接学报, 2022, 43(5): 90-97.

    Bao Liangliang, Pan Chunyu, Liu Fujian, et al. Microstructure and impact toughness of laser-arc hybrid welding simulated heat affected zone of high strength low alloy steel[J]. Transactions of the China Welding Institution, 2022, 43 (5): 90-97.
    [9]
    Yang X Z, Zhang L C, Shi Y S, et al. Effective microstructure unit in control of impact toughness in CGHAZ for high strength bridge steel[J]. Journal of Wuhan University of Technology(Materials Science), 2018, 33(1): 177 − 184. doi: 10.1007/s11595-018-1803-2
    [10]
    Bing C, Yun P, Lin Z, et al. Effect of heat input on microstructure and toughness of coarse grained heat affected zone of Q890 steel[J]. LSIJ International, 2016, 56(1): 132 − 139.
    [11]
    刘自成, 王学林, 喻异双, 等. 高强度钢韧化机制及与亚结构关系的研究[J]. 钢铁研究学报, 2020, 32(12): 1093 − 1101.

    Liu Zicheng, Wang Xuelin, Yu Yishuang, et al. Study on toughening mechanism of high strength steel and its relationship with substructure[J]. Journal of Iron and Steel Research, 2020, 32(12): 1093 − 1101
    [12]
    Sun L G, Li H R, Zhu L G, et al. Research on the evolution mechanism of pinned particles in welding HAZ of Mg treated shipbuilding steel[J]. Materials & Design, 2020, 192: 108670.
    [13]
    Min Seok Baek, Kyu Sik Kim, Tae Won Park, et al. Quantitative phase analysis of martensite-bainite steel using EBSD and its microstructure, tensile and high-cycle fatigue behaviors[J]. Materials Science & Engineering A, 2020, 785: 139375.
    [14]
    Chen Kui, Li Huabing, Jiang Zhouhua, et al. Multiphase microstructure formation and its effect on fracture behavior of medium carbon high silicon high strength steel[J]. Journal of Materials Science & Technology, 2021, 72: 81 − 92.
    [15]
    周涛. 马氏体基高强钢强韧化机理研究与物理建模[D]. 北京: 北京科技大学, 2018.

    Zhou Tao. Study of strengthening and toughening, and physical-based modeling of martensite-based high-strength steels[D]. Beijing: University of Science and Technology Beijing, 2018.
    [16]
    Liu Jingwu, Wei Shitong, Sun Qishan, et al. Microstructure characteristics and mechanical properties of deposited metals with different types of bainite[J]. Journal of Materials Research and Technology, 2023, 23: 744 − 755. doi: 10.1016/j.jmrt.2023.01.064
    [17]
    邓大阳. 20CrMnTi在冲击荷载作用下动态断裂行为研究[D]. 贵州: 贵州大学, 2017.

    Deng Dayang. Study on dynamic fracture behavior of 20CrMnTi under impact loading[D]. Guizhou: Guizhou University, 2017.
    [18]
    姜珂. 超低温奥氏体球墨铸铁微观组织与低温冲击断裂行为的研究[D]. 沈阳: 沈阳工业大学, 2017.

    Jiang Ke. Research on the microstructure and low-temperature impact fracture behavior of ultra-low temperature ductile Ni-resist iron[D]. Shenyang: Shenyang University of Technology, 2017.
    [19]
    刘爱辉. 12Cr1MoV钢动态断裂韧度的研究[D]. 哈尔滨: 哈尔滨理工大学, 2004.

    Liu Aihui. The study on dynamic fracture toughness of 12Cr1MoV steel[D]. Harbin: Harbin University of Science and Technology, 2004.
    [20]
    赵亚通. 基于仪器化夏比冲击试验的管道钢断裂韧性确定方法研究[D]. 北京: 中国石油大学(北京), 2018.

    Zhao Yatong. Study on determination of fracture toughness of pipeline steel based on instrumental Charpy impact test[D]. Beijing: China University of Petroleum, 2018.
    [21]
    李景丽. 316LN奥氏体不锈钢的固溶热处理组织及热老化性能研究[D]. 秦皇岛: 燕山大学, 2013.

    Li Jingli. The investigation on solution treatment microstructure and thermal aging properties of 316LN austenitic stainless steel[D]. Qinhuangdao: Yanshan University, 2013.
    [22]
    潘建华. 冲击载荷作用下压力容器用金属材料动态断裂行为的研究[D]. 合肥: 中国科学技术大学, 2013.

    Pan Jianhua. Dynamic fracture behavior of pressure vessel metal materials under impact loads[D]. Hefei: University of Science and Technology of China, 2013
    [23]
    吴毅. V/Ti微合金化对中碳钢组织结构及机械性能影响机制研究[D]. 哈尔滨: 哈尔滨工业大学, 2010.

    Wu Yi. Research on the influence mechanisms of V/Ti micro-alloying to the microstructure and mechanical properties of medium carbon steel[D]. Harbin: Harbin Institute of Technology, 2010.
    [24]
    石昆. 大型低温球罐用07MnNiMoDR钢的组织与低温冲击性能离散性的研究[D]. 上海: 上海交通大学, 2016

    Shi Kun. Study on the microstructure and low temperature toughness scattering behavior of 07MnNiMoDR steel used in large-sized low-temperature spherical tank[D]. Shanghai: Shanghai Jiao Tong University, 2016.

Catalog

    Article views (35) PDF downloads (25) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return