Citation: | CAO Rui, YANG Zhaoqing, LI Jinmei, LEI Wanqing, ZHANG Jianxiao, CHEN Jianhong. Influence of fraction of coarse-grained heat affected zone on impact toughness for 09MnNiDR welded joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(5): 7-13. DOI: 10.12073/j.hjxb.20190818003 |
Lan L, Qiu C, Zhao D, et al. Analysis of microstructural variation and mechanical behaviors in submerged arc welded joint of high strength low carbon bainitic steel[J]. Materials Science & Engineering A, 2012, 558(12): 592 − 601.
|
Yang Y, Cheng J, Nie W J, et al. Investigation on the microstructure and toughness of coarse grained heat affected zone in X-100 multi-phase pipeline steel with high Nb content[J]. Materials Science & Engineering A, 2012, 558(12): 692 − 701.
|
崔冰, 彭云, 彭梦都, 等. 焊接热输入对Q890高强钢热影响区裂纹扩展的影响[J]. 焊接学报, 2017, 38(8): 63 − 67. doi: 10.12073/j.hjxb.20150617003
Cui Bing, Peng Yun, Peng Mengdu, et al. Effect of heat input on crack growth behavior of CGHAZ of Q890 high-performance steel[J]. Transactions of the China Welding Institution, 2017, 38(8): 63 − 67. doi: 10.12073/j.hjxb.20150617003
|
Zhou Y, Jia T, Zhang X, et al. Microstructure and toughness of the CGHAZ of an offshore platform steel[J]. Journal of Materials Processing Technology, 2015, 219(5): 314 − 320.
|
Zhu Z, Han J, Li H. Influence of heat input on microstructure and toughness properties in simulated CGHAZ of X80 steel manufactured using high-temperature processing[J]. Metallurgical and Materials Transactions A, 2015, 46(11): 5467 − 5475. doi: 10.1007/s11661-015-3122-y
|
秦华, 苏允海, 连景宝. BWELDY960Q钢焊接热模拟热影响区组织与性能[J]. 焊接学报, 2018, 39(11): 97 − 101.
Qin Hua, Su Yunhai, Lian Jingbao. Microstructure and properties in heat affected zone of BWELDY960Q steel by welding thermal simulation test[J]. Transactions of the China Welding Institution, 2018, 39(11): 97 − 101.
|
Jang J, Ju J, Lee B, et al. Effects of microstructural change on fracture characteristics in coarse- grained heat- affected zones of QLT-processes 9% Ni steel[J]. Materials Science & Engineering A, 2003, 340(1-2): 68 − 79.
|
Yang S, Ju L, Cong W. On the heterogeneous microstructure development in the welded joint of 12MnNiVR pressure vessel steel subjected to high heat input electrogas welding[J]. Journal of Materials Science & Technology, 2019, 35(8): 1747 − 1752.
|
Cao R, Yang Z, Chan Z, et al. The determination of the weakest zone and the effects of the weakest zone on the impact toughness of the 12Cr2Mo1R welded joint[J]. Journal of Manufacturing Processes, 2020, 50(2): 539 − 546.
|
Chen J, Cao R. Micromechanism of cleavage fracture of metals[M]. USA: Elsevier, 2014.
|
Wang X, Wang X, Shang C, et al. Characterization of the multi-pass weld metal and the impact of retained austenite obtained through intercritical heat treatment on low temperature toughness[J]. Materials Science & Engineering A, 2016, 649(1): 282 − 292.
|
Liang Y, Chun L, De W, et al. Microstructural characteristics and toughness of the simulated coarse grained heat affected zone of high strength low carbon bainitic steel[J]. Materials Science & Engineering A, 2011, 529(11): 192 − 200.
|
文明月, 董文超, 庞辉勇, 等. 一种Fe-Cr-Ni-Mo高强钢焊接热影响区的显微组织与冲击韧性研究[J]. 金属学报, 2018, 54(4): 501 − 511. doi: 10.11900/0412.1961.2017.00331
Wen Mingyue, Dong Wenchao, Pang Huiyong, et al. Microstructure and impact toughness of welding heat affected zones of a Fe-Cr-Ni-Mo high strength steel[J]. Acta Metallurgica Sinica, 2018, 54(4): 501 − 511. doi: 10.11900/0412.1961.2017.00331
|
[1] | WANG Hongyu, HUANG Jinlei, CHEN Sheng, ZHU Jian, MAO Jizhou. Analysis of the theory and temperature field of additive manufacturing with powder core wire based on Cu-Al-Fe alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(4): 111-119. DOI: 10.12073/j.hjxb.20220519002 |
[2] | LI Yongqiang, Zhao He, Zhao Xihua, Jiang Wenhu, Zhang Weihua. Numerical simulation of RSW temperature field during aluminum alloys LB-RSW[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (4): 29-32. |
[3] | XU Peiquan, ZHAO Xiaohui, HE Jianping, XU Guoxiang, YU Zhishui. Simulation on temperature field for Invar alloy during TIG welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (6): 37-40. |
[4] | MA Lin, YUAN Jinping, ZHANG Ping, ZHAO Junjun. Finite numerical simulation of temperature field in multi-pass laser cladding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (7): 109-112. |
[5] | HU Jun-feng, YANG Jian-guo, FANG Hong-yuan, LI Guang-min, CHEN Wei. Temperature field of arc gouging and its influence on microstructures[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (5): 93-96. |
[6] | HAN Guo-ming, LI Jian-qiang, YAN Qing-liang. Modeling and simulating of temperature field of laser welding for stainless steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (3): 105-108. |
[7] | DU Han-bin, HU Lun-ji, WANG Dong-cuan, SUN Cheng-zhi. Simulation of the temperature field and flow field in full penetration laser welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (12): 65-68,100. |
[8] | XUE Zhong ming, GU Lan, ZHANG Yan hua. Numerical simulation on temperature field in laser welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2003, (2): 79-82. |
[9] | Zou Zengda, Wang Xinhong, Qu Shiyao. Numerical Simulation of Temperature Field for Weld-repaired Zone of White Cast Iron[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1999, (1): 24-29. |
[10] | Xu Qinghong, Guo Wei, Tian Xitang, Li Zhi. Numerical Simulation and Experiment of Temperature Field of Laser Cladding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1997, (2): 58-62. |
1. |
庞嘉尧,程伟. 铝合金搅拌摩擦焊接头疲劳性能研究进展. 兵器材料科学与工程. 2025(01): 164-175 .
![]() | |
2. |
邹阳,魏巍,范悦,王泽震,王强,赵亮. 铝合金搅拌摩擦焊工艺研究进展. 热加工工艺. 2024(03): 7-13 .
![]() |