Advanced Search
XUE Gang, ZHAO Fuchen, JING Yanhong, NIU Jicheng, ZHANG Yonghui, GAI Dengyu. Effect of carbon on impact toughness of metal deposited with high strength austenite electrodes[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (8): 89-92.
Citation: XUE Gang, ZHAO Fuchen, JING Yanhong, NIU Jicheng, ZHANG Yonghui, GAI Dengyu. Effect of carbon on impact toughness of metal deposited with high strength austenite electrodes[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (8): 89-92.

Effect of carbon on impact toughness of metal deposited with high strength austenite electrodes

More Information
  • Received Date: June 09, 2008
  • The impact toughness of metal deposited by high strength austenite electrodes with different carbon content was tested.The microstructure of the impact fractures and the eroded samples were analyzed by SEM.The second-phase was analyzed with the energy spectrometer and the TEM.The solidifying phases and the content of second-phase were calculated with the thermodynamic simulation software.The results indicate that the impact toughness reduces with the carbon increasing.The main cause is that the increasing of carbon content induces the shape changing from particles to slices, the dimension and the content increasing of the carbides forming in the solidification.The carbides weaken the continuity of the austenite base.And the brittle carbides crash easily in the crack spreading.These reduce the impact toughness of the deposited metal.
  • Related Articles

    [1]XIA Weisheng, LIU Fen, WEI Chunhua, WU Fengshun, YANG Yunzhen. Prediction and finite element analysis of the mechanical properties of heat affected zone of laser welded blanks[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(3): 79-82.
    [2]MI Gaoyang, WEI Yanhong, ZHAN Xiaohong, GU Cheng. A study of automatically transitional meshing approach for finite element method during butt welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(5): 44-46,88.
    [3]ZHU Hai, GUO Yanling, ZHANG Shanshan. Finite element analysis of thermal-mechanical coupled model for friction welded joint of 35Cr2Ni4MoA high-strength steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (4): 81-84.
    [4]HONG Bo, LI Lin, HONG Yuxiang, YANG Jiawang. Finite element analysis of magnetic control arc welding seam tracking sensors[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (7): 5-8.
    [5]HU Qingxian, WANG Yanhui, YAO Qingjun, WANG Shunyao. Finite element analysis of temperature field during keyholeplasma arc welding using SYSWELD software[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (12): 66-69.
    [6]YANG Iinjuan, SHEN Shiming. Finite element analysis of residual stress of welding repair for gas pipeline[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (12): 77-80.
    [7]LUO Yongchi. Nonlinear finite element analysis of residual stresses and thermoharm in direct welded K-joint of steel tubular members[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (3): 65-68.
    [8]WANG Huai-gang, WU Chuan-song, ZHANG Ming-xian. Finite element method analysis of temperature field in keyhole plasma arc welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (7): 49-53.
    [9]DONG Jun-hui, LIN Yan, LIN Wen-guang, YAO Qing-hu. Finite element analysis on welding residual stresses of thick wall pipe of heat resistant steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (2): 25-27,36.
    [10]WU Yan-qing, PEI Yi, YANG Yong-xing, ZHANG Jian-xun. Finite Element Analysis of Transformation Super-plastic Welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2000, (4): 65-68.

Catalog

    Article views (237) PDF downloads (76) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return