Advanced Search
Tian Xitang, Zhu Hongguan, Xu Shipeng, Gao Yingbo, Xie Guolu. PROPAGATION OF WELD TOE CRACKS UNDER FATIGUE LOAD[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1981, (3): 85-95.
Citation: Tian Xitang, Zhu Hongguan, Xu Shipeng, Gao Yingbo, Xie Guolu. PROPAGATION OF WELD TOE CRACKS UNDER FATIGUE LOAD[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1981, (3): 85-95.

PROPAGATION OF WELD TOE CRACKS UNDER FATIGUE LOAD

More Information
  • Received Date: February 22, 1981
  • The paper contains experimental results of propagation rate distribution of a toe crack along its front under fatigue load.Experiments were performed on aluminum alloy(LY-12R) specimens simulating geometrical shape of a T-joint with toe crack.To obtain the crack propagation rate,markings were induced on fracture surface with changes in amplitude at specified numbers of fatigue load cycles.After complete fracture of the specimen,propagation rates were calculated by measuring the distance between markings on the fracture surface.It is shown that(1) owing to the stress concentration at the toe,the propaga-tion rate of a toe crack in the direction of plate width is always higher than that of a crack of the same size in a flat plate,irrespective of the crack depth;(2) additional moment,caused by angular welding distortion,increases the propagation rate of toe crack in the direction of plate width;(3) the stress intensity factor of a toe crack at the front near the surface is always higher than that of a crack of the same size in a flat plate under the same loading conditions;(4) compressive residual stress at the toe is effective in reducing the propagation rate of toe crack;(5) the length of a crack originated from a toe crack when its vertex reaches the back surface of the plate is much greater than the final length of a part-through crack of the seme size,originated from a flate plate,when the plate is penetrated through under the same loading conditions.This should be taken into full acconnt in designing pressure vessels on the pinciple of "leak before break".
  • Related Articles

    [1]HUANG Weibo, ZHAO Xiaoyu, LU Wenjia, Zhu Lisha, ZHANG Yimin. Fatigue fracture mechanism of 304 stainless steel manufactured by laser metal deposition[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(9): 67-73. DOI: 10.12073/j.hjxb.20221129006
    [2]XU Rongwei, ZHANG Zhenjie, LIU Qingyuan, ZHANG Guanghui, LONG Yuhong. The forming deviation, mechanical properties and compression failure of porous structures fabricated by laser melting were analyzed[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(10): 49-56. DOI: 10.12073/j.hjxb.20211005001
    [3]YANG Jin, XING Baoying, HE Xiaocong, ZENG Kai, ZHOU Lu. Analysis of competitive failure mechanisms and mechanical properties of self-piercing riveted joints in corrosive environments[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(7): 69-75. DOI: 10.12073/j.hjxb.20211024002
    [4]WANG Ping, MI Liyan, YU Yifei, DONG Pingsha. Fatigue design and prediction on cruciform joint of 7N01 aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(10): 20-24. DOI: 10.12073/j.hjxb.2019400257
    [5]HUANG Zhichao, SONG Tianci, LAI Jiamei. Fatigue property and failure mechanism of self piercing riveted joints of TA1 titanium alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(3): 41-46. DOI: 10.12073/j.hjxb.2019400069
    [6]ZHANG Liwen, ZHONG Yuping, LI Shiqian, CHEN Youheng. Life prediction of creep-fatigue for 304H with welded joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(1): 156-160. DOI: 10.12073/j.hjxb.2019400031
    [7]SHU Shuangwen, ZHOU Guoyan, CHEN Xing. Experimental study on mechanical properties of 316L brazed joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(12): 83-86.
    [8]LI Hui, JIAO Lei, LI Jiansheng, He Chang Lin. Temperature effects on thermal fatigue performance of sprayed coatings on copper substrate and its failure mechanism[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(11): 79-83,88.
    [9]XING Baoying, HE Xiaocong, WANG Yuqi, LIU Fulong. Fatigue properties and failure mechanisms of self-piercing riveted joints in aluminium alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(6): 50-54.
    [10]WEN Guichen, LEI Yongping, LIN Jian, GU Jian, BAI Hailong, QIN Junhu. Failure mode and mechanism of BGA lead-free solder joints under drop-impact load[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(5): 73-76.

Catalog

    Article views (398) PDF downloads (53) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return