Advanced Search
WANG Ping, MI Liyan, YU Yifei, DONG Pingsha. Fatigue design and prediction on cruciform joint of 7N01 aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(10): 20-24. DOI: 10.12073/j.hjxb.2019400257
Citation: WANG Ping, MI Liyan, YU Yifei, DONG Pingsha. Fatigue design and prediction on cruciform joint of 7N01 aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(10): 20-24. DOI: 10.12073/j.hjxb.2019400257

Fatigue design and prediction on cruciform joint of 7N01 aluminum alloy

More Information
  • Received Date: February 15, 2019
  • Available Online: July 12, 2020
  • The fatigue failure mode of aluminum alloy cruciform joint was carried out for the first time. By using the finite element analysis and fatigue test, the stress concentration factor s (SCF) of weld toe based on the traditional hot spot stress (HSS) and the equilibrium equivalent structural stress(EETS) were compared, the latter was mesh-insentive and shows high consistency. Besides, the influence of the Continuous member thickness of the joint, the penetration depth of the joint and the loading span on the EETS at the weld toe and the weld root are analyzed. And the effective traction stress was used to calculate the root cracking angle. It is found that, the equivalent structural stress at the weld toe keeps the constant, while the EETS at weld root changes with different continuous plate, the loading span and the penetration depth. The fatigue test shows that the root cracking angle is not 45°, which is consistent with the analytical prediction. The fatigue design of the cruciform joint needs to consider both the joint geometry and welding quality, which should meet the equivalent structural stress at the weld toe ( Ss, toe) is higher than the equivalent structural stress (Ss, toe) at the root of the weld.
  • Zuheir Barsoum, Jack Samuelsson, Bertil Jonsson, et al. Fatigue design of lightweight welded vehicle structures: influence of material and production procedures[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2012, 226(10): 1736 − 1744. doi: 10.1177/0954405412458046
    Hobbacher A F. The new IIW recommendations for fatigue assessment of welded joints and components–A comprehensive code recently updated[J]. International Journal of Fatigue, 2009, 31(1): 50 − 58. doi: 10.1016/j.ijfatigue.2008.04.002
    Dong P. A structural stress definition and numerical implementation for fatigue analysis of welded joints[J]. International Journal of Fatigue, 2001, 23(10): 865 − 876. doi: 10.1016/S0142-1123(01)00055-X
    Dong P, Hong J K, Osage D A, et al. The master S-N curve method: an implementation for fatigue evaluation of welded components in the ASME B&PV code, section VIII, division 2 and API 579-1/ASME FFS-1[S]. Welding Research Council 2010: WRC-523.
    Xing S, Dong P, Wang P. A quantitative weld sizing criterion for fatigue design of load-carrying fillet-welded connections[J]. International Journal of Fatigue, 2017, 101(2): 448 − 458.
    武 奇, 邱惠清, 王伟生. 基于结构应力的焊接接头疲劳分析[J]. 焊接学报, 2009, 30(3): 101 − 104. doi: 10.3321/j.issn:0253-360X.2009.03.026

    Wu Qi, Qiu Huiqing, Wang Weisheng. Fatigue analysis of welded joints by method of structural stress[J]. Transactions of the China Welding Institution, 2009, 30(3): 101 − 104. doi: 10.3321/j.issn:0253-360X.2009.03.026
    刘 永, 王 苹, 马 然, 等. 铝合金非承载十字接头疲劳特性[J]. 焊接学报, 2016, 37(8): 83 − 87.

    Liu Yong, Wang Ping, Ma Ran, et al. Fatigue property of aluminum non-load bearing cruciform joint[J]. Transactions of the China Welding Institution, 2016, 37(8): 83 − 87.
    聂春戈, 孙振轩, 孙彦彬, 等. 考虑疲劳性能的十字接头角焊缝尺寸设计[J]. 焊接学报, 2015, 36(2): 5 − 8.

    Nie Chunge, Sun Zhenxuan, Sun Yanbin, et al. Weld sizing of fillet welds in cruciform joint by considering fatigue resistance[J]. Transactions of the China Welding Institution, 2015, 36(2): 5 − 8.
    方洪渊. 焊接结构学[M]. 北京: 机械工业出版社, 2017.
    Ping Wang, Xianjun Pei, Pingsha Dong, et al. Traction structural stress analysis of fatigue behaviors of rib-to-deck joints in orthotropic bridge deck[J]. International Journal of Fatigue, 2019, 125: 11 − 22. doi: 10.1016/j.ijfatigue.2019.03.038
  • Related Articles

    [1]SHEN Lei, HUANG Jiankang, LIU Guangyin, YU Shurong, FAN Ding, SONG Min. Microstructure and properties of titanium alloy made by plasma arc and AC auxiliary arc additive manufacturing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(10): 57-63. DOI: 10.12073/j.hjxb.20220918002
    [2]LI Junzhao, SUN Qingjie, YU Hang, ZHANG Pengcheng, LIU Yibo, ZENG Xianshan. Study on grain size and microstructure of TC4 titanium alloy TIG and laser welding joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(10): 57-62, 70. DOI: 10.12073/j.hjxb.20211015001
    [3]WANG Leilei, LIU Ting, DUAN Shuyao, ZHAN Xiaohong. Effect of element distribution on the microstructure of FeCoCrNi high entropy alloy coating[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(11): 57-64. DOI: 10.12073/j.hjxb.20210707004
    [4]WANG Ting, WANG Yifan, WEI Lianfeng, LI Qixian, JIANG Siyuan. Microstructure and properties of low voltage electron beam wire deposition layer of TC4 titanium alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(10): 54-59. DOI: 10.12073/j.hjxb.20200803002
    [5]QIN Hang, CAI Zhihai, ZHU Jialei, WANG Kai, LIU Jian. Microstructure and properties of TC4 titanium alloy by direct underwater laser beam welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(12): 143-148. DOI: 10.12073/j.hjxb.2019400328
    [6]GAO Xiaogang1, DONG Junhui1, HAN Xu1, HOU Jijun1, XU Dewei2. Weld shape and microstructure of Ti6Al4V alloy fluoride A-TIG weld[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(7): 31-34. DOI: 10.12073/j.hjxb.20161026006
    [7]LANG Bo, ZHANG Tiancang, TAO Jun, GUO Delun. Microstructure in linear friction welded dissimillar titanium alloy joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (7): 105-108,112.
    [8]GU Baolan, DING Dawei, WANG Li, XU Xuedong. Effects of heat treatment on microstructure and properties of electron beam welded TC4 titanium alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (10): 85-88.
    [9]LIU Shi-fu, SHEN Yi-fu, WANG Shao-gang. Microstructure analyse of surface Ti-metallized graphite[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (12): 89-92.
    [10]Meng Qinseng, Wan Bao. Influence of microstructural appearances of slag on detachability of electrode[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1993, (3): 202-206.
  • Cited by

    Periodical cited type(7)

    1. 张普,曹四龙. Al_2O_3+TiO_2复合颗粒对激光熔覆Inconel 718基润滑涂层显微组织及高温磨损行为的影响研究. 材料保护. 2024(06): 8-19 .
    2. 魏来,李丹,董振. 原位自生(Ti, V)C堆焊层的耐磨性能. 沈阳工业大学学报. 2023(01): 43-47 .
    3. 刘海浪,卢儒学,陈健,徐珖韬,张倩. 镍基合金电子束熔覆表面改性及高温耐磨性研究. 金属热处理. 2021(04): 161-166 .
    4. 吴雁楠,黄诗铭,朱平,马振一,兰博,何翰伟,郝博文. 原位碳化钛颗粒增强镍基喷焊层的组织与性能. 热加工工艺. 2021(22): 96-98+102 .
    5. 马强,陈明宣,孟君晟,李成硕,史晓萍,彭欣. 纯铜表面氩弧熔覆TiB_2/Ni复合涂层组织及耐磨性能. 焊接学报. 2021(09): 90-96+102 . 本站查看
    6. 王永东,杨在林,张宇鹏,朱艳. Y_2O_3对原位自生TiC增强Ni基涂层组织和性能影响. 焊接学报. 2020(02): 53-57+100 . 本站查看
    7. 陈鹏涛,曹梅青,吕萧,仇楠楠. 氩弧熔敷原位合成ZrC-TiB_2增强铁基涂层的组织与性能. 上海金属. 2020(05): 15-20 .

    Other cited types(2)

Catalog

    Article views (369) PDF downloads (29) Cited by(9)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return