Advanced Search
HUANG Weibo, ZHAO Xiaoyu, LU Wenjia, Zhu Lisha, ZHANG Yimin. Fatigue fracture mechanism of 304 stainless steel manufactured by laser metal deposition[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(9): 67-73. DOI: 10.12073/j.hjxb.20221129006
Citation: HUANG Weibo, ZHAO Xiaoyu, LU Wenjia, Zhu Lisha, ZHANG Yimin. Fatigue fracture mechanism of 304 stainless steel manufactured by laser metal deposition[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(9): 67-73. DOI: 10.12073/j.hjxb.20221129006

Fatigue fracture mechanism of 304 stainless steel manufactured by laser metal deposition

More Information
  • Received Date: November 28, 2022
  • Available Online: July 23, 2023
  • Laser metal deposition is a widely used laser additive manufacturing technology. The fatigue tests of 304 austenitic stainless steel manufactured by laser metal deposition are carried out and the fatigue fracture mechanism is studied. According to the experimental results, the S-N curve of 304 austenitic stainless steel manufactured by laser metal deposition is drawn. The results show that the stress amplitude has an important effect on the fatigue fracture morphology. The larger the stress amplitude is, the coarser the fatigue fracture is. Under the higher stress amplitude, there are randomly distributed holes and cracks on the surface of the fracture specimen. Material defects such as oxide inclusions and pores are the main causes of fatigue crack initiation, and large local plastic deformation under the large stress amplitude (such as 275 MPa) is also one of the causes of fatigue crack initiation. With the increase of stress amplitude, the fatigue bands become clearer. Under the higher stress amplitude, the intersection of multiple slip systems leads to the expansion of fatigue bands in different plane, and the tire indentation appears in the crack propagation zone. With the increase of stress amplitude, the number of secondary cracks increases due to the increase of plastic deformation in the fatigue crack propagation zone.
  • Campanelli S L, Angelastro A, Signorile C G, et al. Investigation on direct laser powder deposition of 18Ni (300) marage steel using mathematical model and experimental characterization[J]. International Journal of Advanced Manufacturing Technology, 2017, 89: 885 − 895. doi: 10.1007/s00170-016-9135-x
    Liu F G, Lin X, Song M H, et al. Effect of tempering temperature on microstructure and mechanical properties of laser solid formed 300M steel[J]. Journal of Alloy and Compounds, 2016, 689: 225 − 232. doi: 10.1016/j.jallcom.2016.07.276
    Song M H, Lin X, Yang G L, et al. Influence of forming atmosphere on the deposition characteristics of 2Cr13 stainless steel during laser solid forming[J]. Journal of Materials Processing Technology, 2014, 214: 701 − 709. doi: 10.1016/j.jmatprotec.2013.09.023
    Wang T, Zhu Y Y, Zhang S Q, et al. Grain morphology evolution behavior of titanium alloy components during laser melting deposition additive manufacturing[J]. Journal of Alloy and Compounds, 2015, 632: 505 − 513. doi: 10.1016/j.jallcom.2015.01.256
    Appleyard D. Powering up on power technology[J]. Metal Powder Report, 2015, 70: 285 − 289. doi: 10.1016/j.mprp.2015.08.075
    奥妮, 何子昂, 吴圣川, 等. 激光增材制造AlSi10Mg合金的力学性能研究进展[J]. 焊接学报, 2022, 43(9): 1 − 19. doi: 10.12073/j.hjxb.20220502001

    Ao Ni, He Ziang, Wu Shengchuan, et al. Recent progress on the mechanical properties of laser additive manufacturing AlSi10Mg alloy[J]. Transactions of the China Welding Institution, 2022, 43(9): 1 − 19. doi: 10.12073/j.hjxb.20220502001
    Yi Y, Zhang Y, Dong K, et al. The development of 3D printing technology and the current situation of controlling defects in SLM technology[J]. China Welding, 2020, 29(3): 9 − 19.
    Zhang C C, Zhu H H, Liao H L, et al. Effect of heat treatment on fatigue property of selective laser melting AlSi10Mg[J]. International Journal of Fatigue, 2018, 116: 513 − 522. doi: 10.1016/j.ijfatigue.2018.07.016
    Liu F, Lin X, Yang H, et al. Effect of microstructure on the fatigue crack growth behavior of laser solid formed 300M steel[J]. Materials Science & Engineering A, 2017, 695: 258 − 264.
    Ran X, Liu D, Li J, et al. Effects of microstructures on the fatigue crack growth behavior of laser additive manufactured ultrahigh-strength AerMet100 steel[J]. Materials Science & Engineering A, 2018, 721: 251 − 262.
    Nezhadfar P D, Johnson A S, Shamsaei N. Fatigue behavior and microstructural evolution of additively manufactured Inconel 718 under cyclic loading at elevated temperature[J]. International Journal of Fatigue, 2020, 136: 105598. doi: 10.1016/j.ijfatigue.2020.105598
    Lu S, Bao R, Wang K. Fatigue crack growth behaviour in laser melting deposited Ti-6.5Al-3.5Mo-1.5Zr-0.3Si alloy[J]. Materials Science & Engineering A, 2017, 690: 378 − 386.
    Liu Z, Liu P, Wang L, et al. Fatigue properties of Ti-6.5Al-3.5Mo-l. 5Zr-0.3Si alloy produced by direct laser deposition[J]. Materials Science & Engineering A, 2018, 716: 140 − 149.
    Li Z, Tian X, Tang H, et al. Low cycle fatigue behavior of laser melting deposited TC18 titanium alloy[J]. Transactions of Nonferrous Metals Society of China, 2013, 23: 2591 − 2597. doi: 10.1016/S1003-6326(13)62772-7
    Anwar U H, Hani M T, Nureddin M A. Failure of weld joints between carbon steel pipe and 304 stainless steel elbows[J]. Engineering Failure Analysis, 2005, 12: 181 − 191. doi: 10.1016/j.engfailanal.2004.07.003
    Zhang H Z, Xu M T, Liu Z D, et al. Microstructure, surface quality, residual stress, fatigue behavior and damage mechanisms of selective laser melted 304L stainless steel considering building direction[J]. Additive Manufacturing, 2021, 46: 102147. doi: 10.1016/j.addma.2021.102147
    Zhang H, Li C Y, Xu M T, et al. The fatigue performance evaluation of additively manufactured 304L austenitic stainless steels[J]. Materials Science and Engineering A, 2021, 802: 140640. doi: 10.1016/j.msea.2020.140640
    Yu H C, Yang J J, Yin J, et al. Comparison on mechanical anisotropies of selective laser melted Ti-6Al-4V alloy and 304 stainless steel[J]. Materials Science and Engineering A, 2017, 695: 92 − 100. doi: 10.1016/j.msea.2017.04.031
    Casati R, Lemke J, Vedani M. Microstructure and fracture behavior of 316L austenitic stainless steel produced by selective laser melting[J]. Journal of Materials Science & Technology, 2016, 32: 738 − 744.
    Hayashi M, Enomoto K. Effect of preliminary surface working on fatigue strength of type 304 stainless steel at ambient temperature and 288 ℃ in air and pure water environment[J]. International Journal of Fatigue, 2006, 28: 1626 − 1632. doi: 10.1016/j.ijfatigue.2005.09.016
    Liu L, Huang T W, Xiong Y H, et al. Grain refinement of superalloy K4169 by addition of refiners: cast structure and refinement mechanisms[J]. Materials Science and Engineering A, 2005, 394: 1 − 8. doi: 10.1016/j.msea.2004.10.005
    Pegues J W, Roach M D, Shamsaei N. Influence of microstructure on fatigue crack nucleation and microstructurally short crack growth of an austenitic stainless steel[J]. Materials Science and Engineering A, 2017, 707: 657 − 667. doi: 10.1016/j.msea.2017.09.081
    Deng G J, Tu S T, Wang Q Q, et al. Small fatigue crack growth mechanisms of 304 stainless steel under different stress levels[J]. International Journal of Fatigue, 2014, 64: 14 − 21. doi: 10.1016/j.ijfatigue.2014.01.027
  • Related Articles

    [1]ZENG Jie, TAN Haohao, YANG Fang, ZHOU Wangjun, LI Liangxing, CHANG Guiqin, LUO Haihui. Reliability analysis of solder layer of IGBT module under passive thermal cycling[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(7): 123-128. DOI: 10.12073/j.hjxb.20220517002
    [2]SUN Lei, ZHANG Yi, CHEN Minghe, ZHANG Liang, MIAO Naiming. Finite element analysis of solder joint reliability of 3D packaging chip[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(1): 49-53. DOI: 10.12073/j.hjxb.20201021002
    [3]JIANG Nan, ZHANG Liang, LIU Zhiquan, XIONG Mingyue, LONG Weimin. Reliability analysis of thermal shock for SnAgCu solder joints of FCBGA devices[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(9): 39-42. DOI: 10.12073/j.hjxb.2019400232
    [4]YANG Song, YANG Yuanming. U-tube local damage analysis and preventable method for AP1000 steam generator during local post weld heat treatment[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(6): 90-94.
    [5]LI Chang, WANG Bingchen, HA Xing, YU Xiaoguang. Analysis of motion accuracy reliabilityfor arc welding robot based on ADAMS/View[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(7): 63-66.
    [6]YE Huan, XUE Songbai, ZHANG Liang, WANG Hui. Finite element analysis on reliability of lead-free soldered joints for CSP device[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (11): 93-96.
    [7]JI Feng, XUE Songbai, ZHANG Liang, WANG Hui. Finite element analysis on soldered joint reliability of QFN device[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (10): 57-60.
    [8]GAO Lili, XUE Songbai, ZHANG Liang, SHENG Zhong. Finite element analysis on influencing factors of soldered column reliability in a CCGA device[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (7): 93-96.
    [9]LIN Guoxiang, YE Jinbao, QIU Changjun. Calculating method of reliability on anti fatigue fracture of weld[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (1): 50-52.
    [10]ZHANG Liang, XUE Songbai, LU Fangyan, HAN Zongjie. Finite element analysis on soldered joint reliability of QFP device with different solders[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (10): 45-48, 52.
  • Cited by

    Periodical cited type(5)

    1. 孙浩东,吴晓晔,胡志伟,唐晓田,王志鹏. 窄边结构相变热控构件的搅拌摩擦焊工艺研究. 当代化工研究. 2025(04): 148-150 .
    2. 张继元,毛育青,王金锴,黎宁,黄清. 旋转速度对铝合金锁底结构搅拌摩擦焊接头成形及力学性能的影响. 精密成形工程. 2024(08): 61-67 .
    3. 林森,党键,韩晓辉,李刚卿,张铁浩,赵存金. 基于焊接速度的6082铝合金FSW接头组织与力学性能调控研究. 电焊机. 2024(09): 30-37+54 .
    4. 陶虎威,郝云飞,邵明皓,姜炳鑫,李志航,张华. 2219铝合金搅拌摩擦焊缝在弱腐蚀下的腐蚀行为. 有色金属工程. 2024(10): 1-10 .
    5. 邓利芬,李超,丁艳霞,熊占兵,毕海娟. 大厚度2219铝合金搅拌摩擦焊组织和性能及工程因素分析. 焊接. 2023(06): 18-23 .

    Other cited types(0)

Catalog

    Article views (253) PDF downloads (86) Cited by(5)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return