Citation: | HUANG Weibo, ZHAO Xiaoyu, LU Wenjia, Zhu Lisha, ZHANG Yimin. Fatigue fracture mechanism of 304 stainless steel manufactured by laser metal deposition[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(9): 67-73. DOI: 10.12073/j.hjxb.20221129006 |
Campanelli S L, Angelastro A, Signorile C G, et al. Investigation on direct laser powder deposition of 18Ni (300) marage steel using mathematical model and experimental characterization[J]. International Journal of Advanced Manufacturing Technology, 2017, 89: 885 − 895. doi: 10.1007/s00170-016-9135-x
|
Liu F G, Lin X, Song M H, et al. Effect of tempering temperature on microstructure and mechanical properties of laser solid formed 300M steel[J]. Journal of Alloy and Compounds, 2016, 689: 225 − 232. doi: 10.1016/j.jallcom.2016.07.276
|
Song M H, Lin X, Yang G L, et al. Influence of forming atmosphere on the deposition characteristics of 2Cr13 stainless steel during laser solid forming[J]. Journal of Materials Processing Technology, 2014, 214: 701 − 709. doi: 10.1016/j.jmatprotec.2013.09.023
|
Wang T, Zhu Y Y, Zhang S Q, et al. Grain morphology evolution behavior of titanium alloy components during laser melting deposition additive manufacturing[J]. Journal of Alloy and Compounds, 2015, 632: 505 − 513. doi: 10.1016/j.jallcom.2015.01.256
|
Appleyard D. Powering up on power technology[J]. Metal Powder Report, 2015, 70: 285 − 289. doi: 10.1016/j.mprp.2015.08.075
|
奥妮, 何子昂, 吴圣川, 等. 激光增材制造AlSi10Mg合金的力学性能研究进展[J]. 焊接学报, 2022, 43(9): 1 − 19. doi: 10.12073/j.hjxb.20220502001
Ao Ni, He Ziang, Wu Shengchuan, et al. Recent progress on the mechanical properties of laser additive manufacturing AlSi10Mg alloy[J]. Transactions of the China Welding Institution, 2022, 43(9): 1 − 19. doi: 10.12073/j.hjxb.20220502001
|
Yi Y, Zhang Y, Dong K, et al. The development of 3D printing technology and the current situation of controlling defects in SLM technology[J]. China Welding, 2020, 29(3): 9 − 19.
|
Zhang C C, Zhu H H, Liao H L, et al. Effect of heat treatment on fatigue property of selective laser melting AlSi10Mg[J]. International Journal of Fatigue, 2018, 116: 513 − 522. doi: 10.1016/j.ijfatigue.2018.07.016
|
Liu F, Lin X, Yang H, et al. Effect of microstructure on the fatigue crack growth behavior of laser solid formed 300M steel[J]. Materials Science & Engineering A, 2017, 695: 258 − 264.
|
Ran X, Liu D, Li J, et al. Effects of microstructures on the fatigue crack growth behavior of laser additive manufactured ultrahigh-strength AerMet100 steel[J]. Materials Science & Engineering A, 2018, 721: 251 − 262.
|
Nezhadfar P D, Johnson A S, Shamsaei N. Fatigue behavior and microstructural evolution of additively manufactured Inconel 718 under cyclic loading at elevated temperature[J]. International Journal of Fatigue, 2020, 136: 105598. doi: 10.1016/j.ijfatigue.2020.105598
|
Lu S, Bao R, Wang K. Fatigue crack growth behaviour in laser melting deposited Ti-6.5Al-3.5Mo-1.5Zr-0.3Si alloy[J]. Materials Science & Engineering A, 2017, 690: 378 − 386.
|
Liu Z, Liu P, Wang L, et al. Fatigue properties of Ti-6.5Al-3.5Mo-l. 5Zr-0.3Si alloy produced by direct laser deposition[J]. Materials Science & Engineering A, 2018, 716: 140 − 149.
|
Li Z, Tian X, Tang H, et al. Low cycle fatigue behavior of laser melting deposited TC18 titanium alloy[J]. Transactions of Nonferrous Metals Society of China, 2013, 23: 2591 − 2597. doi: 10.1016/S1003-6326(13)62772-7
|
Anwar U H, Hani M T, Nureddin M A. Failure of weld joints between carbon steel pipe and 304 stainless steel elbows[J]. Engineering Failure Analysis, 2005, 12: 181 − 191. doi: 10.1016/j.engfailanal.2004.07.003
|
Zhang H Z, Xu M T, Liu Z D, et al. Microstructure, surface quality, residual stress, fatigue behavior and damage mechanisms of selective laser melted 304L stainless steel considering building direction[J]. Additive Manufacturing, 2021, 46: 102147. doi: 10.1016/j.addma.2021.102147
|
Zhang H, Li C Y, Xu M T, et al. The fatigue performance evaluation of additively manufactured 304L austenitic stainless steels[J]. Materials Science and Engineering A, 2021, 802: 140640. doi: 10.1016/j.msea.2020.140640
|
Yu H C, Yang J J, Yin J, et al. Comparison on mechanical anisotropies of selective laser melted Ti-6Al-4V alloy and 304 stainless steel[J]. Materials Science and Engineering A, 2017, 695: 92 − 100. doi: 10.1016/j.msea.2017.04.031
|
Casati R, Lemke J, Vedani M. Microstructure and fracture behavior of 316L austenitic stainless steel produced by selective laser melting[J]. Journal of Materials Science & Technology, 2016, 32: 738 − 744.
|
Hayashi M, Enomoto K. Effect of preliminary surface working on fatigue strength of type 304 stainless steel at ambient temperature and 288 ℃ in air and pure water environment[J]. International Journal of Fatigue, 2006, 28: 1626 − 1632. doi: 10.1016/j.ijfatigue.2005.09.016
|
Liu L, Huang T W, Xiong Y H, et al. Grain refinement of superalloy K4169 by addition of refiners: cast structure and refinement mechanisms[J]. Materials Science and Engineering A, 2005, 394: 1 − 8. doi: 10.1016/j.msea.2004.10.005
|
Pegues J W, Roach M D, Shamsaei N. Influence of microstructure on fatigue crack nucleation and microstructurally short crack growth of an austenitic stainless steel[J]. Materials Science and Engineering A, 2017, 707: 657 − 667. doi: 10.1016/j.msea.2017.09.081
|
Deng G J, Tu S T, Wang Q Q, et al. Small fatigue crack growth mechanisms of 304 stainless steel under different stress levels[J]. International Journal of Fatigue, 2014, 64: 14 − 21. doi: 10.1016/j.ijfatigue.2014.01.027
|
[1] | ZENG Jie, TAN Haohao, YANG Fang, ZHOU Wangjun, LI Liangxing, CHANG Guiqin, LUO Haihui. Reliability analysis of solder layer of IGBT module under passive thermal cycling[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(7): 123-128. DOI: 10.12073/j.hjxb.20220517002 |
[2] | SUN Lei, ZHANG Yi, CHEN Minghe, ZHANG Liang, MIAO Naiming. Finite element analysis of solder joint reliability of 3D packaging chip[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(1): 49-53. DOI: 10.12073/j.hjxb.20201021002 |
[3] | JIANG Nan, ZHANG Liang, LIU Zhiquan, XIONG Mingyue, LONG Weimin. Reliability analysis of thermal shock for SnAgCu solder joints of FCBGA devices[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(9): 39-42. DOI: 10.12073/j.hjxb.2019400232 |
[4] | YANG Song, YANG Yuanming. U-tube local damage analysis and preventable method for AP1000 steam generator during local post weld heat treatment[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(6): 90-94. |
[5] | LI Chang, WANG Bingchen, HA Xing, YU Xiaoguang. Analysis of motion accuracy reliabilityfor arc welding robot based on ADAMS/View[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(7): 63-66. |
[6] | YE Huan, XUE Songbai, ZHANG Liang, WANG Hui. Finite element analysis on reliability of lead-free soldered joints for CSP device[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (11): 93-96. |
[7] | JI Feng, XUE Songbai, ZHANG Liang, WANG Hui. Finite element analysis on soldered joint reliability of QFN device[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (10): 57-60. |
[8] | GAO Lili, XUE Songbai, ZHANG Liang, SHENG Zhong. Finite element analysis on influencing factors of soldered column reliability in a CCGA device[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (7): 93-96. |
[9] | LIN Guoxiang, YE Jinbao, QIU Changjun. Calculating method of reliability on anti fatigue fracture of weld[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (1): 50-52. |
[10] | ZHANG Liang, XUE Songbai, LU Fangyan, HAN Zongjie. Finite element analysis on soldered joint reliability of QFP device with different solders[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (10): 45-48, 52. |