Advanced Search
LIU Xudong, SA Zicheng, FENG Jiayun, LI Haozhe, TIAN Yanhong. The Development Status On Advanced Packaging Copper Pillar Bump Interconnection Technology and Reliability[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION. DOI: 10.12073/j.hjxb.20240718001
Citation: LIU Xudong, SA Zicheng, FENG Jiayun, LI Haozhe, TIAN Yanhong. The Development Status On Advanced Packaging Copper Pillar Bump Interconnection Technology and Reliability[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION. DOI: 10.12073/j.hjxb.20240718001

The Development Status On Advanced Packaging Copper Pillar Bump Interconnection Technology and Reliability

More Information
  • Received Date: July 17, 2024
  • Available Online: December 26, 2024
  • With the rapid development of the lightweight electronic components, copper pillar bump (CPB) provides a high-performance, high-reliability flip-chip interconnect solution with its unique structure, smaller size and higher connection density. In this paper, the differences between conventional C4 bumps and CPB are compared, and the advantages of CPB in terms of structure and performance are summarized, while the challenges faced by CPB are presented. The process flow of the electroplating method is discussed, and the effects of the plating solution composition and plating parameters on the quality of CPB are reviewed. This paper summarizes the performance of CPB in terms of thermal-cycle and electromigration reliability, including the effects of thermal aging, thermal cycling, and electromigration tests on CPB. Finally, the future development direction of CPB is summarized and prospected.

  • [1]
    Kikuchi K. 3D-IC Technology for Contribution to the IoT Society[J]. J. Japan Inst. Electron. Packag, 2019, 22(6): 501 − 506. doi: 10.5104/jiep.22.501
    [2]
    Waldrop M M. More than moore[J]. Nature, 2016, 530(7589): 144 − 148. doi: 10.1038/530144a
    [3]
    Nah J W, Suh J O, Tu K N, et al. Electromigration in flip chip solder joints having a thick Cu column bump and a shallow solder interconnect[J]. Journal of applied physics, 2006, 100(12).
    [4]
    Tu K N, Tu K N. Electromigration in Flip Chip Solder Joints[J]. Solder Joint Technology: Materials, Properties, and Reliability, 2007: 245-288.
    [5]
    Lee S, Guo Y X, Ong C K. Electromigration effect on Cu-pillar (Sn) bumps[C]//2005 7th Electronic Packaging Technology Conference. IEEE, 2005, 1: 5 pp.
    [6]
    Tsai W S, Huang C Y, Chung C K, et al. Generational changes of flip chip interconnection technology[C]//2017 12th International Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT). IEEE, 2017: 306-310.
    [7]
    Huang M, Yeow O G, Poo C Y, et al. A study on copper pillar interconnect in flip-chip-on-module packaging[C]//2007 9th Electronics Packaging Technology Conference. IEEE, 2007: 325-330.
    [8]
    Flack W W, Nguyen H A, Capsuto E, et al. Characterization of a thick copper pillar bump process[C]//2007 12th International Symposium on Advanced Packaging Materials: Processes, Properties, and Interfaces. IEEE, 2007: 208-213.
    [9]
    Garnier A, Arnaud L, Franiatte R, et al. Electrical performance of high density 10 µm diameter 20 µm pitch Cu-pillar with chip to wafer assembly[C]//2017 IEEE 67th Electronic Components and Technology Conference (ECTC). IEEE, 2017: 999-1007.
    [10]
    Tummala R R, Raj P M, Aggarwal A, et al. Copper interconnections for high performance and fine pitch flip chip digital applications and ultra-miniaturized RF module applications[C]//56th Electronic Components and Technology Conference 2006. IEEE, 2006: 10 pp.
    [11]
    Yu J, Anand A, Mui Y C, et al. Reliability study on copper pillar bumping with lead free solder[C]//2007 9th Electronics Packaging Technology Conference. IEEE, 2007: 618-622.
    [12]
    Baliga J. Copper now a pillar of high-end packaging[J]. Semiconductor International, 2006.
    [13]
    Chau D S, Gupta A, Chiu C P, et al. Impact of different flip-chip bump materials on bump temperature rise and package reliability[C]//Proceedings. International Symposium on Advanced Packaging Materials: Processes, Properties and Interfaces, 2005. IEEE, 2005: 90-93.
    [14]
    Nicholls L, Darveaux R, Syed A, et al. Comparative electromigration performance of Pb Free flip chip joints with varying board surface condition[C]//2009 59th Electronic Components and Technology Conference. IEEE, 2009: 914-921.
    [15]
    Nah J W, Suh J O, Tu K N, et al. Electromigration in Pb-free solder bumps with Cu column as flip chip joints[C]//56th Electronic Components and Technology Conference 2006. IEEE, 2006: 6 pp.
    [16]
    Koh W, Lin B, Tai J. Copper pillar bump technology progress overview[C]//2011 12th International Conference on Electronic Packaging Technology and High Density Packaging. IEEE, 2011: 1-5.
    [17]
    Lau J H. Recent advances and new trends in flip chip technology[J]. Journal of Electronic Packaging, 2016, 138(3): 030802. doi: 10.1115/1.4034037
    [18]
    Lu D, Wong C P. Materials for advanced packaging[M] . 2nd ed. Springer International Publishing, 2016.
    [19]
    Datta M. Manufacturing processes for fabrication of flip-chip micro-bumps used in microelectronic packaging: An overview[J]. Journal of Micromanufacturing, 2020, 3(1): 69 − 83. doi: 10.1177/2516598419880124
    [20]
    Dudderar T D, Degani Y, Spadafora J G, et al. AT&T spl mu/Surface Mount Assembly: A New Technology for the Large Volume Fabrication of Cost Effective Flip-Chip MCMs[C]//Proceedings of the International Conference on Multichip Modules. IEEE, 1994: 266-272.
    [21]
    Töpper M, Lu D. Bumping technologies[M]//Advanced Flip Chip Packaging. Boston, MA: Springer US, 2013: 53-84.
    [22]
    王美玉, 梅云辉, 李欣. 无压烧结银与化学镀镍(磷)和电镀镍基板的界面互连研究[J]. 机械工程学报, 2022, 58(2): 159 − 165.

    WANG Meiyu, MEI Yunhui, LI Xin. Study on Interfacial Bonding between Pressureless Sintered Silver with Electroless-plated Nickel(Phosphorus) and Electro-plated Nickel Metallization[J]. Journal of Mechanical Engineering, 2022, 58(2): 159 − 165.
    [23]
    Morey A M, Popelar S, Hook J. An Investigation into Thermomigration Failure of Flip Chip Solder Joint Interconnects Used in High-Reliability Applications[J]. Journal of Microelectronics and Electronic Packaging, 2022, 19(2): 77 − 82. doi: 10.4071/imaps.1717945
    [24]
    Kamata T, Kato D, Ida H, et al. Structure and electrochemical characterization of carbon films formed by unbalanced magnetron (UBM) sputtering method[J]. Diamond and related materials, 2014, 49: 25 − 32. doi: 10.1016/j.diamond.2014.07.007
    [25]
    JIN L, YANG J, YANG F, et al. Research progresses of copper interconnection in chips[J]. Journal of Electrochemistry, 2020, 26(4): 11.
    [26]
    Chen Y, He W, Chen X, et al. Plating uniformity of bottom-up copper pillars and patterns for IC substrates with additive-assisted electrodeposition[J]. Electrochimica Acta, 2014, 120: 293 − 301. doi: 10.1016/j.electacta.2013.12.112
    [27]
    Yin L, Wafula F, Dimitrov N, et al. Toward a better understanding of the effect of Cu electroplating process parameters on Cu 3 Sn voiding[J]. Journal of electronic materials, 2012, 41: 302 − 312. doi: 10.1007/s11664-011-1764-0
    [28]
    Li L L, Yang C J. Size control of copper grains by optimization of additives to achieve flat-top copper pillars through electroplating[J]. Journal of The Electrochemical Society, 2017, 164(6): D315. doi: 10.1149/2.1251706jes
    [29]
    Li L L, Yeh H C. Effect of the functional group of polyethylene glycol on the characteristics of copper pillars obtained by electroplating[J]. Journal of Materials Science: Materials in Electronics, 2021, 32(11): 14358 − 14367.
    [30]
    Zhu H P, Zhu Q S, Zhang X, et al. Microvia filling by copper electroplating using a modified safranine T as a leveler[J]. Journal of The Electrochemical Society, 2017, 164(9): D645. doi: 10.1149/2.0111712jes
    [31]
    Zhu Q S, Ding Z F, Wei X F, et al. Effect of leveler on performance and reliability of copper pillar bumps in wafer electroplating under large current density[J]. Microelectronics Reliability, 2023, 146: 115030. doi: 10.1016/j.microrel.2023.115030
    [32]
    Tan B Z, Liang J L, Lai Z L, et al. Electrochemical Deposition of Copper Pillar Bumps with High Uniformity[J]. Journal of Electrochemistry, 2022, 28(7): 7.
    [33]
    Yung K C, Yue T M, Chan K C, et al. The effects of pulse plating parameters on copper plating distribution of microvia in PCB manufacture[J]. IEEE transactions on electronics packaging manufacturing, 2003, 26(2): 106 − 109. doi: 10.1109/TEPM.2003.817722
    [34]
    Luo V, Xue X T, Yu K C, et al. Method to improve the process efficiency for copper pillar electroplating[J]. Journal of The Electrochemical Society, 2015, 163(3): E39.
    [35]
    申兵伟, 徐明玥, 杨尚荣, 等. 焊接时间及焊接温度对Sn35Bi0.3Ag/Cu焊接接头性能的影响[J]. 焊接学报, 2023, 44(3): 77 − 86.

    SHEN Bingwei, XU Mingyue, YANG Shangrong, LIU Guohua, XIE Ming, DUAN Yunzhao. Effect of welding time and temperature on properties of Sn35Bi0.3Ag/Cu welded joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(3): 77 − 86.
    [36]
    Yin L, Kondos P, Borgesen P, et al. Controlling Cu electroplating to prevent sporadic voiding in Cu 3 Sn[C]//2009 59th Electronic Components and Technology Conference. IEEE, 2009: 406-414.
    [37]
    Xu T, Hu X, Li Y, et al. The growth behavior of interfacial intermetallic compound between Sn–3.5 Ag–0.5 Cu solder and Cu substrate under different thermal-aged conditions[J]. Journal of Materials Science: Materials in Electronics, 2017, 28: 18515 − 18528.
    [38]
    Zhao W, Rao L, Hu A, et al. Research on the reliability of Cu/Sn copper pillar bump[C]//2017 18th International Conference on Electronic Packaging Technology (ICEPT). IEEE, 2017: 946-949.
    [39]
    Ratchev P, Vandevelde B, De Wolf I. Reliability and failure analysis of Sn-Ag-Cu solder interconnections for PSGA packages on Ni/Au surface finish[J]. IEEE Transactions on Device and Materials Reliability, 2004, 4(1): 5 − 10. doi: 10.1109/TDMR.2003.822341
    [40]
    Chen X, Cheng J, Wu H, et al. Open failure mechanisms of FCBGA package under temperature cycling stress[C]//2017 IEEE 24th International Symposium on the Physical and Failure Analysis of Integrated Circuits (IPFA). IEEE, 2017: 1-4.
    [41]
    Alberti R, Vaion R E, Mervic A, et al. Metal fatigue in copper pillar flip chip BGA: A refined acceleration model for the aluminium pad cracking failure mechanism[J]. Microelectronics Reliability, 2015, 55(9-10): 1838 − 1842. doi: 10.1016/j.microrel.2015.06.150
    [42]
    Tian Y, Liu X, Chow J, et al. Experimental evaluation of SnAgCu solder joint reliability in 100-μm pitch flip-chip assemblies[J]. Microelectronics Reliability, 2014,
    [43]
    Pang J H L, Wong S C K, Neo S K, et al. Thermal cycling fatigue analysis of copper pillar-to-solder joint reliability[C]//2008 2nd Electronics System-Integration Technology Conference. IEEE, 2008: 743-748
    [44]
    Park S M, Bang H S, Bang H S, et al. Thermo-mechanical analysis of TSV and solder interconnects for different Cu pillar bump types[J]. Microelectronic engineering, 2012, 99: 38 − 42. doi: 10.1016/j.mee.2012.05.056
    [45]
    Sun H, Gao B, Zhao J. Thermal-mechanical reliability analysis of WLP with fine-pitch copper post bumps[J]. Soldering & Surface Mount Technology, 2021, 33(3): 178 − 186.
    [46]
    Yoon J W, Moon W C, Jung S B. Interfacial reaction of ENIG/Sn-Ag-Cu/ENIG sandwich solder joint during isothermal aging[J]. Microelectronic engineering, 2006, 83(11-12): 2329 − 2334. doi: 10.1016/j.mee.2006.10.027
    [47]
    Liu B, Tian Y, Liu W, et al. TEM observation of interfacial compounds of SnAgCu/ENIG solder bump after laser soldering and subsequent hot air reflows[J]. Materials Letters, 2016, 163: 254 − 257. doi: 10.1016/j.matlet.2015.10.108
    [48]
    Accogli A, Gibertini E, Panzeri G, et al. Understanding the failure mode of electroless nickel immersion gold process: in situ-Raman spectroscopy and electrochemical characterization[J]. Journal of The Electrochemical Society, 2020, 167(8): 082507. doi: 10.1149/1945-7111/ab8ce6
    [49]
    Arazna A, Krolikowski A, Koziol G, et al. The corrosion characteristics and solderability of immersion tin coatings on copper[J]. Materials and Corrosion, 2013, 64(10): 914 − 925. doi: 10.1002/maco.201106434
    [50]
    Delhaise A M, Bagheri Z, Meschter S, et al. Tin whisker growth on electronic assemblies soldered with Bi-containing, Pb-free alloys[J]. Journal of Electronic Materials, 2021, 50(3): 842 − 854. doi: 10.1007/s11664-020-08544-6
    [51]
    Amli S F M, Salleh M A A M, Ramli M I I, et al. Effects of immersion silver (ImAg) and immersion tin (ImSn) surface finish on the microstructure and joint strength of Sn-3.0 Ag-0.5 Cu solder[J]. Journal of Materials Science: Materials in Electronics, 2022, 33(17): 14249 − 14263. doi: 10.1007/s10854-022-08353-z
    [52]
    Huang M, Yeow O G, Poo C Y, et al. Intermetallic formation of copper pillar with Sn–Ag–Cu for flip-chip-on-module packaging[J]. IEEE Transactions on Components and Packaging Technologies, 2008, 31(4): 767 − 775. doi: 10.1109/TCAPT.2008.2001194
    [53]
    Afripin A, Carpenter B, Hauck T. Finite element analysis of copper pillar interconnect stress of flip-chip chip-scale package[C]//2021 22nd International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE). IEEE, 2021: 1-5.
    [54]
    Ning W, Zhu C, Li H, et al. Optimal design toward enhancement of thermomechanical reliability of polyimide layers in a flip-chip-on-lead-frame dual flat no-leads package with copper pillar bumps[J]. Materials science in semiconductor processing, 2013, 16(3): 933 − 939. doi: 10.1016/j.mssp.2013.01.023
    [55]
    Li J, Zhang Y, Zhang H, et al. The thermal cycling reliability of copper pillar solder bump in flip chip via thermal compression bonding[J]. Microelectronics Reliability, 2020, 104: 113543. doi: 10.1016/j.microrel.2019.113543
    [56]
    Meinshausen L, Weide-Zaage K, Frémont H. Electro-and thermo-migration induced failure mechanisms in Package on Package[J]. Microelectronics Reliability, 2012, 52(12): 2889 − 2906. doi: 10.1016/j.microrel.2012.06.115
    [57]
    Chu L, Shi J, Braun R. The impacts of material uncertainty in electro-migration of SAC solder electronic packaging by monte carlo-based stochastic finite-element model[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2021, 11(11): 1864 − 1876.
    [58]
    李雪梅, 孙凤莲, 张浩, 辛瞳. 微焊点Cu/SAC305/Cu固-液界面反应及电迁移行为[J]. 焊接学报, 2016, 37(9): 61 − 64.

    LI Xuemei, SUN Fenglian, ZHANG Hao, XIN Tong. Micro-solder joints Cu/SAC305/Cu solid-liquid interfacial reaction and electromigration behavior[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(9): 61 − 64.
    [59]
    Wu J D, Zheng P J, Lee C W, et al. A study in flip-chip UBM/bump reliability with effects of SnPb solder composition[C]//2003 IEEE International Reliability Physics Symposium Proceedings, 2003. 41st Annual. IEEE, 2003: 132-139.
    [60]
    Lin Y H, Hu Y C, Tsai C M, et al. In situ observation of the void formation-and-propagation mechanism in solder joints under current-stressing[J]. Acta materialia, 2005, 53(7): 2029 − 2035.
    [61]
    Liang Y C, Tsao W A, Chen C, et al. Influence of Cu column under-bump-metallizations on current crowding and Joule heating effects of electromigration in flip-chip solder joints[J]. Journal of Applied Physics, 2012, 111(4).
    [62]
    Orii Y, Toriyama K, Kohara S, et al. Effect of preformed Cu-Sn IMCs layer on electromigration reliability of solder capped Cu pillar bump interconnection on an organic substrate[C]//2012 2nd IEEE CPMT Symposium Japan. IEEE, 2012: 1-4.
    [63]
    Ebersberger B, Bauer R, Alexa L. Reliability of lead-free SnAg solder bumps: influence of electromigration and temperature[C]//Proceedings Electronic Components and Technology, 2005. ECTC'05. IEEE, 2005: 1407-1415.
    [64]
    Ebersberger B, Lee C. Cu pillar bumps as a lead-free drop-in replacement for solder-bumped, flip-chip interconnects[C]//2008 58th Electronic Components and Technology Conference. IEEE, 2008: 59-66.
    [65]
    Syed A, Dhandapani K, Moody R, et al. Cu Pillar and μ-bump electromigration reliability and comparison with high pb, SnPb, and SnAg bumps[C]//2011 IEEE 61st Electronic Components and Technology Conference (ECTC). IEEE, 2011: 332-339.
    [66]
    Lai Y S, Chiu Y T, Chen J. Electromigration reliability and morphologies of Cu pillar flip-chip solder joints with Cu substrate pad metallization[J]. Journal of Electronic Materials, 2008, 37: 1624 − 1630. doi: 10.1007/s11664-008-0515-3
    [67]
    Chen M Y, Liang Y C. Electromigration in reduced-height solder joints with Cu pillars[J]. Journal of Materials Science Materials in Electronics, 2016, 27(4): 3715 − 3722. doi: 10.1007/s10854-015-4213-7
    [68]
    Zhang H, Li J, Zhu W. Electromigration in flip chip with Cu pillar having a shallow Sn-3.5 Ag solder interconnect[C]//2018 19th International Conference on Electronic Packaging Technology (ICEPT). IEEE, 2018: 1653-1656.
    [69]
    Ma H C, Guo J D, Chen J Q, et al. Reliability and failure mechanism of copper pillar joints under current stressing[J]. Journal of Materials Science: Materials in Electronics, 2015, 26: 7690 − 7697.
    [70]
    Hsiao Y H, Chen C F, Yang P F, et al. The physics of Cu pillar bump interconnect under electromigration stress testing[C]//Proceedings of the 5th Electronics System-integration Technology Conference (ESTC). IEEE, 2014: 1-6.
    [71]
    Akiba T, Funaya T, Sakata K, et al. Electromigration mechanism on interconnected Cu pillar in flip chip package[C]//2017 IEEE CPMT Symposium Japan (ICSJ). IEEE, 2017: 1-4.
    [72]
    Liu P, Overson A, Goyal D. Key parameters for fast Ni dissolution during electromigration of Sn0. 7Cu solder joint[C]//2015 IEEE 65th Electronic Components and Technology Conference (ECTC). IEEE, 2015: 99-105.
    [73]
    Hsiao Y H, Lin K L, Lee C W, et al. Study of electromigration-induced failures on Cu pillar bumps joined to OSP and ENEPIG substrates[J]. Journal of electronic materials, 2012, 41: 3368 − 3374. doi: 10.1007/s11664-012-2293-1
    [74]
    Fan Z, Li Z, Li J, et al. Effect of bump shapes on the electromigration reliability of copper pillar solder joints[C]//2021 22nd International Conference on Electronic Packaging Technology (ICEPT). IEEE, 2021: 1-6.
    [75]
    Kuan W C, Liang S W, Chen C. Effect of bump size on current density and temperature distributions in flip-chip solder joints[J]. Microelectronics Reliability, 2009, 49(5): 544 − 550. doi: 10.1016/j.microrel.2009.03.001
    [76]
    Xu K, Fu X, Wang X, et al. The effect of grain orientation of β-Sn on Copper pillar solder joints during electromigration[J]. Materials, 2022, 15(1): 108.
    [77]
    Xu J L, Lu X J, Fu Z W, et al. Research on Electromigration Behavior of Cu Pillar Bumps under Pulse Current Stress[C]//2021 22nd International Conference on Electronic Packaging Technology (ICEPT). IEEE, 2021: 1-4.
    [78]
    Fu Z, Chen J, Zhao P, et al. Interfacial Reaction and Electromigration Failure of Cu Pillar/Ni/Sn-Ag/Cu Microbumps under Bidirectional Current Stressing[J]. Materials, 2023, 16(3): 1134.
  • Related Articles

    [1]LI Geng, WANG Shang, SUN Yuxin, MENG Junhao, WU Wenzhi, TIAN Yanhong. Reliability optimization of solder joints in large-sized COTS devices based on solder mask layer design[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION. DOI: 10.12073/j.hjxb.20240319003
    [2]YANG Dongsheng, ZHANG He, FENG Jiayun, SA Zicheng, WANG Chenxi, TIAN Yanhong. Research progress on micro/nano joining technologies and failure behaviors in electronic packaging[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(11): 126-136. DOI: 10.12073/j.hjxb.20220702003
    [3]WANG Haichao, PENG Xiaowei, GUO Fan, DING Yingjie, CHEN Qiang. Research on reliability of CCGA reinforcement process for aerospace electronic products[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(7): 102-107. DOI: 10.12073/j.hjxb.20210907001
    [4]NAN Xujing, LIU Xiaoyan, CHEN Leida, ZHANG Tao. Effect of thermal cycling on reliability of solder joints of ceramic column grid array package[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(2): 81-85. DOI: 10.12073/j.hjxb.20200331003
    [5]TIAN Ye. Micro-joint reliability of flip chip assembly under thermal shock-strain and stress[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(8): 67-70.
    [6]YE Huan, XUE Songbai, ZHANG Liang, WANG Hui. Finite element analysis on reliability of lead-free soldered joints for CSP device[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (11): 93-96.
    [7]JI Feng, XUE Songbai, ZHANG Liang, WANG Hui. Finite element analysis on soldered joint reliability of QFN device[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (10): 57-60.
    [8]GAO Lili, XUE Songbai, ZHANG Liang, SHENG Zhong. Finite element analysis on influencing factors of soldered column reliability in a CCGA device[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (7): 93-96.
    [9]LIN Guoxiang, YE Jinbao, QIU Changjun. Calculating method of reliability on anti fatigue fracture of weld[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (1): 50-52.
    [10]ZHANG Liang, XUE Songbai, LU Fangyan, HAN Zongjie. Finite element analysis on soldered joint reliability of QFP device with different solders[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (10): 45-48, 52.
  • Cited by

    Periodical cited type(2)

    1. 孙谦,黄瑞生,徐富家,曹浩,李林,宋扬,马强. 介观领域中的激光熔透信号物理特性研究. 焊接学报. 2024(07): 27-33+40 . 本站查看
    2. 陈月峰,王树昂,赵飞,陈金强,程定富,孙云翔. 自动焊图像处理技术的发展及应用研究. 焊接技术. 2021(03): 1-5 .

    Other cited types(1)

Catalog

    Article views (192) PDF downloads (43) Cited by(3)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return