Citation: | GUO Linglan, ZHANG Honghao, ZHANG Xinquan, ZHU Limin, SHEN Daozhi. Research progress on ultrafast laser processing of two-dimensional materials[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(12): 97-105. DOI: 10.12073/j.hjxb.20230613007 |
Two-dimensional materials such as graphene, hexagonal boron nitride, transition metal dichalcogenides, and black phosphorus have attracted significant attention in the fields of science and industry due to their exceptional properties. These materials demonstrate great potential in applications like sensing, catalysis, and energy storage. Ultrafast laser processing technology, known for its high precision and wide material adaptability, plays a crucial role in the processing and device fabrication of two-dimensional materials, achieving non-destructive or low-damage processing. This technique demonstrates advantages in the reduction of graphene oxide, preparation, ablation, and patterned transfer of graphene. For transition metal dichalcogenides and other two-dimensional materials, ultrafast laser can also effectively induce phase transitions, exfoliation, thinning, and surface deposition. The interaction between ultrafast lasers and two-dimensional materials opens new opportunities in high-tech fields such as micro-nanoelectronics and optoelectronics, with future research focusing on reducing costs, improving the performance of quantum devices, and developing high-performance micro-nano devices.
[1] |
Li Chen, Zheng Cun, Zhang Yongqi, et al. The development trend of graphene derivatives[J]. Journal of Electronic Materials, 2022, 51: 4107 − 4114. doi: 10.1007/s11664-022-09687-4
|
[2] |
Joseph S, Mohan J, Lakshmy S, et al. A review of the synthesis, properties, and applications of 2D transition metal dichalcogenides and their heterostructures[J]. Materials Chemistry and Physics, 2023, 297: 127332. doi: 10.1016/j.matchemphys.2023.127332
|
[3] |
朱强, 周佳顶, 赵天眸, 等. 垂直取向石墨烯包覆泡沫镍复合中间层钎焊C/C复合材料与Nb的工艺及性能[J]. 焊接学报, 2022, 43(12): 79 − 83.
Zhu Qiang, Zhou Jiading, Zhao Tianmou, et al. Process and properties of vertically aligned graphene coated Ni foam composite interlayer for brazing C/C composite and Nb[J]. Transactions of the China Weliding Institution, 2022, 43(12): 79 − 83.
|
[4] |
杨景红, 刘甲坤, 付曦, 等. SiO2-BN复相陶瓷润湿性及其接头微观组织[J]. 焊接学报, 2022, 43(10): 31 − 36.
Yang Jinghong, Liu Jiakun, Fu Xi, et al. Study on the wettability and the microstructure of SiO2-BN multiphase ceramics[J]. Transactions of the China Weliding Institution, 2022, 43(10): 31 − 36.
|
[5] |
Liang Zizhan, Shen Rongchen, Ng Yun Hau, et al. A review on 2D MoS2 cocatalysts in photocatalytic H2 production[J]. Journal of Materials Science & Technology, 2020, 56: 89 − 121.
|
[6] |
Kim H, Uddin S Z, Lien D H, et al. Actively variable-spectrum optoelectronics with black phosphorus[J]. Nature, 2021, 596: 232 − 237. doi: 10.1038/s41586-021-03701-1
|
[7] |
Von Klitzing K, Chakraborty T, Kim P, et al. 40 years of the quantum Hall effect[J]. Nature Review Physics, 2020, 2: 397 − 401. doi: 10.1038/s42254-020-0209-1
|
[8] |
Łempicka-Mirek K, Król M, Sigurdsson H, et al. Electrically tunable Berry curvature and strong light-matter coupling in liquid crystal microcavities with 2D perovskite[J]. Science Advances, 2022, 40(8): eabq7533.
|
[9] |
Chen Shugang, Zhang Binyuan, Yang Ziwei, et al. Anomalous Klein tunneling in two-dimensional black phosphorus heterojunctions[J]. Physical Chemistry Chemical Physics, 2023, 25: 23836 − 23846. doi: 10.1039/D3CP03161F
|
[10] |
Wei Guo, Yan Cai. Effect of laser remelting on microstructure and mechanical properties of CrMnFeCoNi high entropy alloy[J]. China Welding, 2021, 30(2): 1 − 10.
|
[11] |
Wang Xiaoduo, Yu Haibo, Li Peiwen, et al. Femtosecond laser-based processing methods and their applications in optical device manufacturing: A review[J]. Optics & Laser Technology, 2021, 135: 106687.
|
[12] |
Zhang Yonglai, Guo Li, Wei Shu, et al. Direct imprinting of microcircuits on graphene oxides film by femtosecond laser reduction[J]. Nano Today, 2010, 5(1): 15 − 20. doi: 10.1016/j.nantod.2009.12.009
|
[13] |
Miyamoto Y, Zhang H, Tomanek D. Photoexfoliation of graphene from graphite: an ab initio study[J]. Physical Review Letters, 2010, 104(20): 208302. doi: 10.1103/PhysRevLett.104.208302
|
[14] |
Abramov D, Arakelian S, Kochuev D, et al. Interaction of femtosecond laser radiation with carbon materials: exfoliation of graphene structures and synthesis of low-dimensional carbon structures[J]. Nanosystems: Physics, Chemistry, Mathematics, 2016, 7(1): 220 − 225.
|
[15] |
Gadde R K, Srikanth G, Byram C, et al. Eco-friendly synthesis of wrinkle-free ultra-flat multi-layer graphene by femtosecond laser irradiation of graphite under ambient conditions[J]. IEEE Transactions on Nanotechnology, 2023, 22: 252 − 259. doi: 10.1109/TNANO.2023.3272009
|
[16] |
Jiang Haobo, Zhang Yonglai, Liu Yan, et al. Bioinspired few-layer graphene prepared by chemical vapor deposition on femtosecond laser-structured Cu foil[J]. Laser & Photonics Reviews, 2016, 10(3): 441 − 450.
|
[17] |
Li Dawei, Zhou Yunshen, Huang Xi, et al. In situ imaging and control of layer-by-layer femtosecond laser thinning of graphene[J]. Nanoscale, 2015, 7(8): 3651 − 3659. doi: 10.1039/C4NR07078J
|
[18] |
Lin Yan, Zhang Qijun, Deng Yongjun, et al. Fabricating graphene and nano diamonds from Lignin by femtosecond laser irradiation[J]. ACS Omega, 2021, 6(49): 33995 − 34002. doi: 10.1021/acsomega.1c05328
|
[19] |
Kim Y J, Le T S D, Nam H K, et al. Wood-based flexible graphene thermistor with an ultra-high sensitivity enabled by ultraviolet femtosecond laser pulses[J]. CIRP Annals, 2021, 70(1): 443 − 446. doi: 10.1016/j.cirp.2021.04.031
|
[20] |
Zhai Zhaoyang, Wang Fangcheng, Mei Xuesong, et al. Preparation of graphene directly on liquid EB curing ink film by femtosecond laser[J]. Optik, 2020, 223: 165485. doi: 10.1016/j.ijleo.2020.165485
|
[21] |
Zhai Zhaoyang, Wu Ningqiang, Wang Zhilong, et al. Fabrication of LIG coating on SiC/SiC composites with femtosecond laser[J]. Optik, 2021, 245: 167628. doi: 10.1016/j.ijleo.2021.167628
|
[22] |
Le T S D, Lee Y A, Nam H K, et al. Green flexible graphene-inorganic-hybrid micro-supercapacitors made of fallen leaves enabled by ultrafast laser pulses[J]. Advanced Functional Materials, 2021, 32(20): 2107768.
|
[23] |
Bobrinetskiy I I, Emelianov A V, Smagulova S A, et al. Laser direct 3D patterning and reduction of graphene oxide film on polymer substrate[J]. Materials Letters, 2017, 187: 20 − 23. doi: 10.1016/j.matlet.2016.10.073
|
[24] |
He Yan, Zhu Linghui, Liu Yan, et al. Femtosecond laser direct writing of flexible all-reduced graphene oxide FET[J]. IEEE Photonics Technology Letters, 2016, 28(18): 1996 − 1999. doi: 10.1109/LPT.2016.2574746
|
[25] |
Liu Zhibo, Li Li, Xu Yanfei, et al. Direct patterning on reduced graphene oxide nanosheets using femtosecond laser pulses[J]. Journal of Optics, 2011, 13: 085601. doi: 10.1088/2040-8978/13/8/085601
|
[26] |
Kang S, Evans C C, Shukla S, et al. Patterning and reduction of graphene oxide using femtosecond-laser irradiation[J]. Optics & Laser Technology, 2018, 103: 340 − 345.
|
[27] |
Bi Yangang, Feng Jing, Li Yunfei, et al. Arbitrary shape designable microscale organic light-emitting devices by using femtosecond laser reduced graphene oxide as a patterned electrode[J]. ACS Photonics, 2014, 1(8): 690 − 695. doi: 10.1021/ph500106f
|
[28] |
Guo Li, Shao Ruiqiang, Zhang Yonglai, et al. Bandgap tailoring and synchronous microdevices patterning of graphene oxides[J]. The Journal of Physical Chemistry C, 2012, 116(5): 3594 − 3599. doi: 10.1021/jp209843m
|
[29] |
Chen Haoyan, Han Dongdong, Tian Ye, et al. Mask-free and programmable patterning of graphene by ultrafast laser direct writing[J]. Chemical Physics, 2014, 430: 13 − 17. doi: 10.1016/j.chemphys.2013.12.005
|
[30] |
Low M J, Lee H, Lim C H J, et al. Laser-induced reduced-graphene-oxide micro-optics patterned by femtosecond laser direct writing[J]. Applied Surface Science, 2020(526): 146647.
|
[31] |
Kasischke M, Maragkaki S, Volz S, et al. Simultaneous nanopatterning and reduction of graphene oxide by femtosecond laser pulses[J]. Applied Surface Science, 2018, 445: 197 − 203. doi: 10.1016/j.apsusc.2018.03.086
|
[32] |
Zou Tingting, Zhao Bo, Xin Wei, et al. Birefringent response of graphene oxide film structurized via femtosecond laser[J]. Nano Research, 2021, 15(5): 4490 − 4499.
|
[33] |
Li Qiang, Ding Ye, Yang Lijun,et al. Periodic nanopatterning and reduction of graphene oxide by femtosecond laser to construct high-performance micro-supercapacitors[J]. Carbon, 2021(172): 144 − 153.
|
[34] |
Currie M, Caldwell J D, Bezares F J, et al. Quantifying pulsed laser induced damage to graphene[J]. Applied Physics Letters, 2011, 99(21): 211909. doi: 10.1063/1.3663875
|
[35] |
Roberts A, Cormode D, Reynolds C, et al. Response of graphene to femtosecond high-intensity laser irradiation[J]. Applied Physics Letters, 2011, 99(5): 051912. doi: 10.1063/1.3623760
|
[36] |
Sahin R, Akturk S, Simsek E. Quantifying the quality of femtosecond laser ablation of graphene[J]. Applied Physics A, 2014, 116(2): 555 − 560. doi: 10.1007/s00339-014-8522-0
|
[37] |
Gil-Villalba A, Meyer R, Giust R, et al. Single shot femtosecond laser nano-ablation of CVD monolayer graphene[J]. Scientific Reports, 2018, 8(1): 14601. doi: 10.1038/s41598-018-32957-3
|
[38] |
Dong Tianqi, Sparkes M, Durkan C, et al. Evaluating femtosecond laser ablation of graphene on SiO2/Si substrate[J]. Journal of Laser Applications, 2016, 28(2): 022202. doi: 10.2351/1.4944510
|
[39] |
Beltaos A, Kovačević A, Matković A, et al. Damage effects on multi-layer graphene from femtosecond laser interaction[J]. Physica Scripta, 2014, T162: 014015. doi: 10.1088/0031-8949/2014/T162/014015
|
[40] |
Zhang W, Li L, Wang Z B, et al. Ti: sapphire femtosecond laser direct micro-cutting and profiling of graphene[J]. Applied Physics A, 2012, 109(2): 291 − 297. doi: 10.1007/s00339-012-7044-x
|
[41] |
Kalita G, Qi L, Namba Y, et al. Femtosecond laser induced micropatterning of graphene film[J]. Materials Letters, 2011, 65(11): 1569 − 1572. doi: 10.1016/j.matlet.2011.02.057
|
[42] |
Ye Xiaohui, Qi Ming, Yang Yifan, et al. Pattern directive sensing selectivity of graphene for wearable multifunctional sensors via femtosecond laser fabrication[J]. Advanced Materials Technologies, 2020, 5(11): 2000446. doi: 10.1002/admt.202000446
|
[43] |
Shi Xuesong, Li Xin, Jiang Liangti, et al. Femtosecond laser rapid fabrication of large-area rose-like micropatterns on freestanding flexible graphene films[J]. Science Report, 2015, 5: 17557. doi: 10.1038/srep17557
|
[44] |
Katsiaounis S, Chourdakis N, Michail E, et al. Graphene nano-sieves by femtosecond laser irradiation[J]. Nanotechnology, 2022, 34(10): 105302.
|
[45] |
Hayashi S, Tsunemitsu K, Terakawa M. Laser direct writing of graphene quantum dots inside a transparent polymer[J]. Nano Letters, 2022, 22(2): 775 − 782. doi: 10.1021/acs.nanolett.1c04295
|
[46] |
Shen Li, Zhou Sikun, Huang Fei, et al. Nitrogen-doped graphene quantum dots synthesized by femtosecond laser ablation in liquid from laser induced graphene[J]. Nanotechnology, 2021, 33(11): 115602.
|
[47] |
Li Xiaojie, Li Xin, Jiang Lan, et al. Preparation of twin graphene quantum dots through the electric-field-assisted femtosecond laser ablation of graphene dispersions[J]. Carbon, 2021, 185: 384 − 394. doi: 10.1016/j.carbon.2021.09.043
|
[48] |
Park J B, Yoo J H, Grigoropoulos C P. Multi-scale graphene patterns on arbitrary substrates via laser-assisted transfer-printing process[J]. Applied Physics Letters, 2012, 101(4): 043110. doi: 10.1063/1.4738883
|
[49] |
Paula K T, Santos S N C, Facure M H M, et al. Fabrication of interdigitated electrodes of graphene oxide/silica by femtosecond laser-induced forward transfer for sensing applications[J]. Journal of Applied Physics, 2023, 133(5): 053103. doi: 10.1063/5.0137926
|
[50] |
Zuo Pei, Jiang Lanjiang, Li Xin, et al. Maskless micro/nanopatterning and bipolar electrical rectification of MoS2 flakes through femtosecond laser direct writing[J]. ACS Applied Materials & Interfaces, 2019, 11(42): 39334 − 39341.
|
[51] |
Wang Kangpeng, Feng Yanyan, Chang Chunxia, et al. Broadband ultrafast nonlinear absorption and nonlinear refraction of layered molybdenum dichalcogenide semiconductors[J]. Nanoscale, 2014, 6(18): 10530 − 10535. doi: 10.1039/C4NR02634A
|
[52] |
Zuo Pei, Jiang Lan, Li Xin, et al. Phase-reversed MoS2 nanosheets prepared through femtosecond laser exfoliation and chemical doping[J]. The Journal of Physical Chemistry C, 2021, 125(15): 8304 − 8313. doi: 10.1021/acs.jpcc.1c00235
|
[53] |
Cheng Meixin, Zhong Shazhou, Rivas N, et al. Persistent photogenerated state attained by femtosecond laser irradiation of thin Td-MoTe2[J]. The Journal of Physical Chemistry C, 2022, 126(32): 13840 − 13846. doi: 10.1021/acs.jpcc.2c03987
|
[54] |
An Sung Jin, Kim Yong Hwan, Lee Chanwoo, et al. Exfoliation of transition metal dichalcogenides by a high-power femtosecond laser[J]. Scientific Reports, 2018, 8(1): 12957. doi: 10.1038/s41598-018-31374-w
|
[55] |
Xu Chenyang, Jiang Lan, Li Xin, et al. Miniaturized high-performance metallic 1T-Phase MoS2 micro-supercapacitors fabricated by temporally shaped femtosecond pulses[J]. Nano Energy, 2020, 67: 104260. doi: 10.1016/j.nanoen.2019.104260
|
[56] |
Lin Han, Xu Zaiquan, Bao Qiaoliang, et al. Laser fabricated ultrathin flat lens in sub-nanometer thick monolayer transition metal dichalcogenides crystal [C]// The 2016 Conference on Lasers and Electro-Optics (CLEO), USA: San Jose, 2016.
|
[57] |
Chen Yu Ling, Tseng Ya Hsin, Chen Yen Chun, et al. Femtosecond-laser ablation of monolayer tungsten diselenide (WSe2) on sapphire [C]// The 2018 Conference on lasers and electro-optics (CLEO), USA: San Jose, 2018.
|
[58] |
Xu Yanmin, Yan Lihe, Li Xiaoyun, et al. Fabrication of transition metal dichalcogenides quantum dots based on femtosecond laser ablation[J]. Scientific Reports, 2019, 9(1): 2931. doi: 10.1038/s41598-019-38929-5
|
[59] |
Paula K T, Mercante L A, Schneider R, et al. Micropatterning MoS2/polyamide electrospun nanofibrous membranes using fmtosecond laser pulses[J]. Photonics, 2019, 6(1): 3. doi: 10.3390/photonics6010003
|
[60] |
Song Qi, Chai Lu, Chen Junqi, et al. Optically tuned wide-band terahertz modulation, charge carrier dynamics and photoconductivity of femtosecond laser ablated titanium dsulfide nanosheet devices[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2021, 27(3): 1 − 6.
|
[61] |
Zuo Pei, Jiang Lan, Li Xin, et al. Metal (Ag, Pt)–MoS2 hybrids greenly prepared through photochemical reduction of femtosecond laser pulses for SERS and HER[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(6): 7704 − 7714.
|
[62] |
Fukuda T, Kaburauchi R, Saito Y, et al. Photo-induced tellurium segregation in MoTe2[J]. Physica Status Solidi (RRL) – Rapid Research Letters, 2022, 16(9): 2100633. doi: 10.1002/pssr.202100633
|
[63] |
Zheng Xianhong. Enhancing the ion accessibility of Ti3C2Tx MXene films by femtosecond laser ablation towards high-rate supercapacitors[J]. Journal of Alloys and Compounds, 2022, 899: 163275. doi: 10.1016/j.jallcom.2021.163275
|
[64] |
Hirayama Y, Obara M. Ablation of BN ceramics by femtosecond and picosecond laser pulses [C]//XIII International Symposium on Gas Flow and Chemical Lasers and High-Power Laser Conference, Florence, Italy: SPIE, 2000: 586-589.
|
[65] |
Melaibari A, Eltaher M A. High repetition rate deposition of boron nitride films using femtosecond pulsed laser[J]. Materials Research Express, 2020, 7(9): 096401. doi: 10.1088/2053-1591/abb39a
|
[66] |
Ren Jun, Lin Han, Zheng Xiaorui, et al. Giant and light modifiable third-order optical nonlinearity in a free-standing h-BN film[J]. Opto-Electronic Science, 2022, 1(6): 210013. doi: 10.29026/oes.2022.210013
|
[67] |
Su Baowang, Yao Binwei, Zhang Xilin, et al. A gate-tunable symmetric bipolar junction transistor fabricated via femtosecond laser processing[J]. Nanoscale Advances, 2020, 2(4): 1733 − 1740. doi: 10.1039/D0NA00201A
|
[1] | ZHAO Qiu, TANG Kun, LI Yinghao, WU Weiqing. Fatigue crack initiation simulation of weld toe based on the Roe-Siegmund cyclic cohesive zone model[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(3): 61-67. DOI: 10.12073/j.hjxb.20230317003 |
[2] | ZHAO Yangyang, LIN Kexin, WANG Ying, GONG Baoming. Fatigue crack initiation behavior of additive manufacturing components based on dislocation model[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(7): 1-8. DOI: 10.12073/j.hjxb.20220825001 |
[3] | DENG Caiyan, LIU Geng, GONG Baoming, LIU Yong. Fatigue crack initiation life prediction based on Tanaka-Mura dislocation model[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(1): 30-37. DOI: 10.12073/j.hjxb.20200706003 |
[4] | ZHANG Jianqiang, CHEN Changfeng, ZHENG Yanjun, ZHANG Xi, LI Tao, ZHANG Nan, WANG Xiaopei. Effect of different Z-direction chemical composition and microstructural inhomogeneity on welding joint heat input[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(1): 112-116. |
[5] | SUN Zhaofan, CAI Donghong, YANG Xudong, LIN Zheng, WANG Song, HUANG Muchun. Porosity defects of 2219 aluminum alloy intersection weld by FSW and VPPAW[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(10): 121-124. |
[6] | SUN Qian, WANG Xuyou, WANG Wei, LI Xiaoyu XU Fujia, LIAO Ying. Study on changing ruler of plasma in laser welding and the quick testing method of blowhole defects——extract method of feature parameters for blowhole defect[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(6): 1-4. |
[7] | WANG Xuyou, SUN Qian, WANG Wei, Li Xiaoyu. Study on the changing ruler of plasma in laser welding and the quick testing method of blowhole defects——integral analysis method for signals detection[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(3): 45-48. |
[8] | ZHU Gangxian, ZHANG Anfeng, LI Dichen, PI Gang. Model of layer thickness of thin-walled parts in laser metal direct manufacturing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (8): 57-60. |
[9] | Pan Jilan(J. L. Pan), He Fangdian, Wu Zhiqiang, He Cunli, Xu Zhenyue. WELDING POWER SOURCE CONTROLLED BY Z-80 SINGLE-BOARD MICROCOMPUTER[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1982, (4): 179-188. |
[10] | Luo Zhichang, Zhang Lin, Li Naixuan, Wen Renqi. A STUDY ON HYDROGEN INDUCED DELAYED CRACKING WITH IMPLANT TEST IN Z-DIRECTION[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1982, (3): 125-138. |
1. |
张明军,李晨希,邹江林,程波,张健,仝永刚,胡永乐,陈根余. AZ31B镁合金功率调制环形光斑光纤激光焊接试验研究. 机械工程学报. 2025(02): 151-161 .
![]() | |
2. |
刘坤,李洁,王浩,简思捷. 镁合金焊接凝固裂纹敏感性评价及晶间液相回填规律分析. 焊接学报. 2023(09): 9-15+129 .
![]() | |
3. |
焦婧,黄金鑫,张志凯. 论带复杂油路类镁合金铸件的清理方法. 世界有色金属. 2022(23): 175-177 .
![]() |