Advanced Search
ZHAO Qiu, TANG Kun, LI Yinghao, WU Weiqing. Fatigue crack initiation simulation of weld toe based on the Roe-Siegmund cyclic cohesive zone model[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(3): 61-67. DOI: 10.12073/j.hjxb.20230317003
Citation: ZHAO Qiu, TANG Kun, LI Yinghao, WU Weiqing. Fatigue crack initiation simulation of weld toe based on the Roe-Siegmund cyclic cohesive zone model[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(3): 61-67. DOI: 10.12073/j.hjxb.20230317003

Fatigue crack initiation simulation of weld toe based on the Roe-Siegmund cyclic cohesive zone model

More Information
  • Received Date: March 16, 2023
  • Available Online: March 07, 2024
  • In order to establish a simulation method for the fatigue crack initiation behavior of the weld toe, ABAQUS was developed based on the Roe-Siegmund cyclic cohesive zone model to form the VUMAT subroutine for reflecting the fatigue cumulative damage. The cohesive parameters of Q345 weld zone materials were obtained by referring to the literature and experimental data. The Voronoi diagram method and cohesive element method were used to generate a microscopic model with fatigue cumulative damage characteristics and grain characteristics. This model was then merged with the macroscopic butt weld model to simulate multi-scale fatigue crack initiation. The results show that this method can spontaneously select the crack initiation location and the short crack extension path in accordance with the actual situation, and complete the simulation of the microfracture process of the material in the welded area, the critical cycle number obtained by different simulation groups exists in a certain distribution range, and the cumulative cohesive length needs to be fitted by experimental data.

  • [1]
    邓彩艳, 刘庚, 龚宝明, 等. 基于Tanaka-Mura位错模型的疲劳裂纹萌生寿命预测[J]. 焊接学报, 2021, 42(1): 30 − 37.

    Deng Caiyan, Liu Geng, Gong Baoming, et al. Fatigue crack initiation life prediction based on Tanaka-Mura dislocation model[J]. Transactions of the China Welding Institution, 2021, 42(1): 30 − 37.
    [2]
    刘小刚, 申顺, 朱阳阳. 基于改进Voronoi图法的焊接接头微观组织建模[J]. 焊接学报, 2022, 43(2): 104 − 112.

    Liu Xiaogang, Shen Shun, Zhu Yangyang, et al. Simulation of fatigue crack initiation of electron beam welding joint based on Tanaka-Mura model[J]. Journal of Propulsion Technology, 2022, 43(2): 104 − 112.
    [3]
    成立夫, 魏国前, 胡珂, 等. 基于FIP的焊趾短裂纹行为仿真[J]. 焊接学报, 2020, 41(12): 7 − 12.

    Cheng Lifu, Wei Guoqian, Hu Ke, et al. FIP based simulation of short crack behavior at weld toe[J]. Transactions of the China Welding Institution, 2020, 41(12): 7 − 12.
    [4]
    杨静, 胡志伟, 刘栋, 等. 微观结构下多晶材料的疲劳损伤模型及裂纹的数值模拟方法[J]. 机械科学与技术, 2020, 39(11): 1788 − 1793.

    Yang Jing, Hu Zhiwei, Liu Dong, et al. Model for fatigue damage and numerical simulation method of cracks for polycrystalline material under microstructure[J]. Mechanical Science and Technology for Aerospace Engineering, 2020, 39(11): 1788 − 1793.
    [5]
    Ghodrati M, Ahmadian M, Mirzaeifar R. Three-dimensional study of rolling contact fatigue using crystal plasticity and cohesive zone method[J]. International Journal of Fatigue, 2019, 128: 105208. doi: 10.1016/j.ijfatigue.2019.105208
    [6]
    Benedetti I, Gulizzi V. A grain-scale model for high-cycle fatigue degradation in polycrystalline materials[J]. International Journal of Fatigue, 2018, 116: 90 − 105. doi: 10.1016/j.ijfatigue.2018.06.010
    [7]
    Sun J, Qian G, Li J, et al. A framework to simulate the crack initiation and propagation in very-high-cycle fatigue of an additively manufactured AlSi10Mg alloy[J]. Journal of the Mechanics and Physics of Solids, 2023, 175: 105293. doi: 10.1016/j.jmps.2023.105293
    [8]
    Roe K L, Siegmund T. An irreversible cohesive zone model for interface fatigue crack growth simulation[J]. Engineering Fracture Mechanics, 2003, 70(2): 209 − 232. doi: 10.1016/S0013-7944(02)00034-6
    [9]
    Cornec A, Scheider I, Schwalbe K H. On the practical application of the cohesive model[J]. Engineering Fracture Mechanics, 2003, 70(14): 1963 − 1987. doi: 10.1016/S0013-7944(03)00134-6
    [10]
    Liao F, Wang W, Chen Y. Parameter calibrations and application of micromechanical fracture models of structural steels[J]. Structural Engineering and Mechanics, 2012, 42(2): 153 − 174. doi: 10.12989/sem.2012.42.2.153
    [11]
    Scheider I, Brocks W. Simulation of cup–cone fracture using the cohesive model[J]. Engineering Fracture Mechanics, 2003, 70(14): 1943 − 1961. doi: 10.1016/S0013-7944(03)00133-4
    [12]
    Shet C, Chandra N. Analysis of energy balance when using cohesive zone models to simulate fracture processes[J]. Journal of Material and Technology, 2002, 124(4): 440 − 450.
    [13]
    刘永明, 张晔江, 陈以一, 等. 焊接热影响区断裂性能试验研究[J]. 力学季刊, 2002, 23(2): 157 − 163.

    Liu Yongming, Zhang Yejiang, Chen Yiyi, et al. Experimental research on fracture performance in weld heat-affect zone[J]Chinese Quarterly of Mechanics. 2002, 23(2): 157 − 163.
    [14]
    Wang Y, Zhou H, Shi Y, et al. Study on fracture toughness indices of Chinese structural steel and weld metal[C]//The Twentieth International Offshore and Polar Engineering Conference. Beijing, China, One Petro, 2010 : 1 − 10.
    [15]
    Borst D. Numerical aspects of cohesive-zone models[J]. Engineering Fracture Mechanics, 2003, 70(14): 1743 − 1757. doi: 10.1016/S0013-7944(03)00122-X
    [16]
    He C, Liu Y, Fang D, et al. Very high cycle fatigue behavior of bridge steel welded joint[J]. Theoretical and Applied Mechanics Letters, 2012, 2(3): 031010. doi: 10.1063/2.1203110
    [17]
    周东亮. 考虑短裂纹的焊接结构裂纹行为仿真研究[D]. 武汉: 武汉科技大学, 2019.

    Zhou Dongliang. Simulation study on crack behavior of welded structure considering short cracks[D]. Wuhan: Wuhan University of Science and Technology, 2019.
    [18]
    Takaki S, Jiang F, Masumura T, et al. Correction of elastic anisotropy in williamson-hall plots by diffraction young’s modulus and direct fitting method[J]. ISIJ International, 2018, 58(4): 769 − 775. doi: 10.2355/isijinternational.ISIJINT-2017-642
    [19]
    侯宇博. 焊接初始微裂纹影响下顶板与纵肋构造细节疲劳性能研究[D]. 成都: 西南交通大学, 2021.

    Hou Yubo. Study on fatigue properties of rib-to-deck structural detail under the influence of welding initial micro-crack[D]. Chengdu: Southwest Jiaotong University, 2021.
    [20]
    Wang B, Nagy W, De B, et al. Fatigue process of rib-to-deck welded joints of orthotropic steel decks[J]. Theoretical and Applied Fracture Mechanics, 2019, 101: 113 − 126. doi: 10.1016/j.tafmec.2019.02.015
    [21]
    许科华. Q345qD桥梁钢焊接接头组织与疲劳行为的研究[D]. 哈尔滨: 哈尔滨工业大学, 2015.

    Xu Kehua. Research on welding joint micro structure and fatigue behavior for the Q345qD bridge steel[D]. Harbin: Harbin Institute of Technology, 2015.
  • Cited by

    Periodical cited type(5)

    1. 王振民,宋哲龙,迟鹏,廖海鹏,张芩. 类人机器人焊接技术研究现状与展望. 机电工程技术. 2025(04): 1-13 .
    2. 陈廷艳,彭一航,董碧云. 不同励磁方式下微间隙焊缝磁光图像的获取与研究. 科技视界. 2025(04): 49-52 .
    3. 王权,程豪,蒋世权. 面向智慧农业的焊接机器人可视化误差补偿系统设计. 现代农业装备. 2025(02): 81-85 .
    4. 李玉帆,原鹏飞. 基于焊接机器人的控制系统设计及研究. 自动化应用. 2025(09): 38-40+43 .
    5. 刘少意,严文荣,陈振明,乔家伟,杨高阳,张新明,王绿原,王克鸿. 机器人智能化焊接技术发展综述. 金属加工(热加工). 2025(06): 1-12 .

    Other cited types(0)

Catalog

    Article views (148) PDF downloads (31) Cited by(5)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return