Advanced Search
ZHAO Yangyang, LIN Kexin, WANG Ying, GONG Baoming. Fatigue crack initiation behavior of additive manufacturing components based on dislocation model[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(7): 1-8. DOI: 10.12073/j.hjxb.20220825001
Citation: ZHAO Yangyang, LIN Kexin, WANG Ying, GONG Baoming. Fatigue crack initiation behavior of additive manufacturing components based on dislocation model[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(7): 1-8. DOI: 10.12073/j.hjxb.20220825001

Fatigue crack initiation behavior of additive manufacturing components based on dislocation model

More Information
  • Received Date: August 24, 2022
  • Available Online: June 18, 2023
  • During selective laser melting (SLM) process, defects will be formed inevitably inside and on the surface of the additive manufacturing component. Therefore, it is important to evaluate the impact of crack propagation at the microscale on service integrity of structures throughout their life cycle from the perspective of fitness for service. In order to quantitatively reveal the initiation behavior of fatigue cracks, the Tanaka-Mura dislocation model was used to explain the fatigue crack initiation and short crack propagation of SLM formed GH3536 alloy. The competition mechanism between the surface and internal initiation of fatigue cracks caused by defect location, defect size, and defect type was analyzed. The results indicate that as the distance from the defect to the surface decreases or the equivalent defect size increases, the fatigue failure mode changes from surface failure to internal failure. SLM formed GH3536 exhibits damage tolerance under corresponding conditions: when the defect size is small, the crack initiation mode of the additive manufacturing component remains the same; while with the rising number of defects, the fatigue short crack propagation path deflects several times and the initiation life decreases significantly.
  • Tan C, Weng F, Sui S, et al. Progress and perspectives in laser additive manufacturing of key aeroengine materials[J]. International Journal of Machine Tools and Manufacture, 2021, 170: 103804. doi: 10.1016/j.ijmachtools.2021.103804
    张宇, 姜云, 胡晓安. 选区激光熔化成形Inconel 625合金的激光焊接头组织及高温蠕变性能[J]. 焊接学报, 2020, 41(5): 78 − 84.

    Zhang Yu, Jiang Yun, Hu Xiaoan. Microstructure and high temperature creep properties of Inconel 625 alloy by selective laser melting[J]. Transactions of the China Welding Institution, 2020, 41(5): 78 − 84.
    张小伟. 金属增材制造技术在航空发动机领域的应用[J]. 航空动力学报, 2016, 31(1): 10 − 16.

    Zhang Xiaowei. Application of metal additive manufacturing in aero-engine[J]. Journal of Aerospace Power, 2016, 31(1): 10 − 16.
    Wang F. Mechanical property study on rapid additive layer manufacture Hastelloy® X alloy by selective laser melting technology[J]. The International Journal of Advanced Manufacturing Technology, 2012, 58(5): 545 − 551.
    巴培培, 董志宏, 张炜, 等. 选区激光熔化成形12CrNi2合金钢的显微组织和力学性能[J]. 焊接学报, 2021, 42(8): 8 − 17. doi: 10.12073/j.hjxb.20210323003

    Ba Peipei, Dong Zhihong, Zhang Wei, et al. Microstructure and mechanical properties of 12CrNi2 alloy steel manufactured by selective laser melting[J]. Transactions of the China Welding Institution, 2021, 42(8): 8 − 17. doi: 10.12073/j.hjxb.20210323003
    Cheng X, Zhao Y, Qian Z, et al. Crack elimination and mechanical properties enhancement in additive manufactured Hastelloy X via in-situ chemical doping of Y2O3[J]. Materials Science & Engineering: A, 2021, 824: 141867. doi: 10.1016/j.msea.2021.141867
    奥妮, 何子昂, 吴圣川, 等. 激光增材制造AlSi10Mg合金的力学性能研究进展[J]. 焊接学报, 2022, 43(9): 1 − 19.

    Ao Ni, He Ziang, Wu Shengchuan, et al. Recent progress on the mechanical properties of laser additive manufacturing AlSi10Mg alloy[J]. Transactions of the China Welding Institution, 2022, 43(9): 1 − 19.
    Tang D, He X, Wu B, et al. The effect of porosity defects on the mid-cycle fatigue behavior of directed energy deposited Ti-6Al-4V[J]. Theoretical and Applied Fracture Mechanics, 2022, 119: 103322. doi: 10.1016/j.tafmec.2022.103322
    Yan Y, Yuan Z, Kaiji D, et al. The development of 3D printing technology and the current situation of controlling defects in SLM technology[J]. China Welding, 2020, 29(3): 9 − 19.
    Nezhadfar P D, Burford E, Anderson-Wedge K, et al. Fatigue crack growth behavior of additively manufactured 17-4 PH stainless steel: Effects of build orientation and microstructure[J]. International Journal of Fatigue, 2019, 123: 168 − 179. doi: 10.1016/j.ijfatigue.2019.02.015
    Sterling A J, Torries B, Shamsaei N, et al. Fatigue behavior and failure mechanisms of direct laser deposited Ti-6Al-4V[J]. Materials Science & Engineering: A, 2016, 655: 100 − 112. doi: 10.1016/j.msea.2015.12.026
    Walker K F, Liu Q, Brandt M. Evaluation of fatigue crack propagation behaviour in Ti-6Al-4V manufactured by selective laser melting[J]. International Journal of Fatigue, 2017, 104: 302 − 308. doi: 10.1016/j.ijfatigue.2017.07.014
    Pineau A, McDowell D L, Busso E P, et al. Failure of metals II: Fatigue[J]. Acta Materialia, 2016, 107: 484 − 507. doi: 10.1016/j.actamat.2015.05.050
    Shibanuma K, Ueda K, Ito H, et al. Model for predicting fatigue life and limit of steels based on micromechanics of small crack growth[J]. Materials & Design, 2018, 139: 269 − 282.
    洪友士, 孙成奇, 刘小龙. 合金材料超高周疲劳的机理与模型综述[J]. 力学进展, 2018, 48(1): 1 − 65.

    Hong Youshi, Sun Chengqi, Liu Xiaolong. A review on mechanisms and models for very-high-cycle fatigue of metallic materials[J]. Advances in Mechanics, 2018, 48(1): 1 − 65.
    Mlikota M, Schmauder S, Božić Ž. Calculation of the Wöhler (S-N) curve using a two-scale model[J]. International Journal of Fatigue, 2018, 114: 289 − 297. doi: 10.1016/j.ijfatigue.2018.03.018
    Tanaka K, Mura T. A dislocation model for fatigue crack initiation[J]. Journal of Applied Mechanics, 1981, 48(1): 97 − 103. doi: 10.1115/1.3157599
    Jezernik N, Kramberger J, Lassen T, et al. Numerical modelling of fatigue crack initiation and growth of martensitic steels[J]. Fatigue & Fracture of Engineering Materials & Structures, 2010, 33(11): 714 − 723.
    Liu X, Lu S. A micro-crack initiation life simulation method by improving the Tanaka-Mura's model of slip behavior[J]. International Journal of Fatigue, 2021, 145: 106108. doi: 10.1016/j.ijfatigue.2020.106108
    Meyer S, Brückner-Foit A, Möslang A. A stochastic simulation model for microcrack initiation in a martensitic steel[J]. Computational Materials Science, 2003, 26: 102 − 110. doi: 10.1016/S0927-0256(02)00409-3
    刘凯, 王荣, 祁海, 等. 选区激光熔化成型 GH3536 合金的显微组织与拉伸性能[J]. 理化检验——物理分册, 2019, 55(1): 15 − 18.

    Liu Kai, Wang Rong, Qi Hai, et al. Microstructure and tensile properties of GH3536 alloy formed by SLM[J]. Physical Testing and Chemical Analysis(Part A: Physical Testing), 2019, 55(1): 15 − 18.
    Oliver W C, Pharr G M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments[J]. Journal of Materials Research, 1992, 7(6): 1564 − 1583. doi: 10.1557/JMR.1992.1564
    Rodríguez R, Gutierrez I. Correlation between nanoindentation and tensile properties: influence of the indentation size effect[J]. Materials Science & Engineering: A, 2003, 361(1-2): 377 − 384. doi: 10.1016/S0921-5093(03)00563-X
    Zhang B, Li Y, Bai Q. Defect formation mechanisms in selective laser melting: a review[J]. Chinese Journal of Mechanical Engineering, 2017, 30(3): 515 − 527. doi: 10.1007/s10033-017-0121-5
    Tanaka K, Mura T. A micromechanical theory of fatigue crack initiation from notches[J]. Mechanics of Materials, 1982, 1(1): 63 − 73. doi: 10.1016/0167-6636(82)90024-2
  • Related Articles

    [1]ZHAO Qiu, TANG Kun, LI Yinghao, WU Weiqing. Fatigue crack initiation simulation of weld toe based on the Roe-Siegmund cyclic cohesive zone model[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(3): 61-67. DOI: 10.12073/j.hjxb.20230317003
    [2]DENG Caiyan, LIU Geng, GONG Baoming, LIU Yong. Fatigue crack initiation life prediction based on Tanaka-Mura dislocation model[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(1): 30-37. DOI: 10.12073/j.hjxb.20200706003
    [3]FU Lei, SHAN Long, WEN Yushuang, WANG Ping, FANG Hongyuan. Characterization of hydrogen gas pressure inner hydrogen induced crack cavity using fracture mechanics theory and finite element method[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(11): 8-12. DOI: 10.12073/j.hjxb.2019400280
    [4]JING Hongyang<sup>1,2</sup>, XU Jingjing<sup>1,2</sup>, XU Lianyong<sup>1,2</sup>, HAN Yongdian<sup>1,2</sup>, ZHAO Lei<sup>1,2</sup>. Finite element simulation of the restraint intensity of rigid butt-jointed cracking specimen and VRC specimen[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(8): 1-5. DOI: 10.12073/j.hjxb.2018390190
    [5]XING Jie1, HAN Yongdian1,2, XU Lianyong1,2, JING Hongyang2, LI Congcheng1, Zhao Lei2. High cycle and low cycle hybrid fatigue damage based on continuum damage mechanics[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(7): 63-66. DOI: 10.12073/j.hjxb.20150708001
    [6]ZHANG Wen, JING Hongyang, XU Lianyong, ZHAO Lei, HAN Yongdian. Prediction of creep crack initiation time in steel pipes with embedded spherical defects[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(2): 75-78.
    [7]WANG Shang, TIAN Yanhong, HAN Chun, LIU YangZhi. Effect of temperature distribution of CBGA components on fatigue life of solder joint by FEA[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(11): 113-118.
    [8]LI Congcheng, JING Hongyang, XU Lianyong, HAN Yongdian, ZHANG Wen. Numerical simulation of crack initiation under creep-fatigue interaction in P92 steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(8): 5-8.
    [9]TONG Chuan, ZENG Shengkui, CHEN Yunxia. Finite element analysis simulations of life prediction for PBGA soldered joints under thermal cycling[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (10): 89-92.
    [10]Ren Zhenan, Zhou Zhenfeng, Sun Daqian. Dynamic observation of cold crack initiation and propagation in SG cast iron weld[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1993, (3): 172-178.
  • Cited by

    Periodical cited type(2)

    1. 张超,周猛兵,崔雷,陶欣,王军,王伟,刘永长. 9Cr-1.5W-0.15Ta耐热钢搅拌摩擦焊焊缝组织和冲击性能分析. 焊接学报. 2024(04): 36-42+131 . 本站查看
    2. 王猛,张立平,赵琳瑜,吴军,熊然,蒙永胜,李军红. 增材制造和锻造TC11钛合金激光焊接头组织与力学性能. 焊接学报. 2023(10): 102-110+138-139 . 本站查看

    Other cited types(1)

Catalog

    Article views (239) PDF downloads (58) Cited by(3)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return