Citation: | ZHAO Yangyang, LIN Kexin, WANG Ying, GONG Baoming. Fatigue crack initiation behavior of additive manufacturing components based on dislocation model[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(7): 1-8. DOI: 10.12073/j.hjxb.20220825001 |
Tan C, Weng F, Sui S, et al. Progress and perspectives in laser additive manufacturing of key aeroengine materials[J]. International Journal of Machine Tools and Manufacture, 2021, 170: 103804. doi: 10.1016/j.ijmachtools.2021.103804
|
张宇, 姜云, 胡晓安. 选区激光熔化成形Inconel 625合金的激光焊接头组织及高温蠕变性能[J]. 焊接学报, 2020, 41(5): 78 − 84.
Zhang Yu, Jiang Yun, Hu Xiaoan. Microstructure and high temperature creep properties of Inconel 625 alloy by selective laser melting[J]. Transactions of the China Welding Institution, 2020, 41(5): 78 − 84.
|
张小伟. 金属增材制造技术在航空发动机领域的应用[J]. 航空动力学报, 2016, 31(1): 10 − 16.
Zhang Xiaowei. Application of metal additive manufacturing in aero-engine[J]. Journal of Aerospace Power, 2016, 31(1): 10 − 16.
|
Wang F. Mechanical property study on rapid additive layer manufacture Hastelloy® X alloy by selective laser melting technology[J]. The International Journal of Advanced Manufacturing Technology, 2012, 58(5): 545 − 551.
|
巴培培, 董志宏, 张炜, 等. 选区激光熔化成形12CrNi2合金钢的显微组织和力学性能[J]. 焊接学报, 2021, 42(8): 8 − 17. doi: 10.12073/j.hjxb.20210323003
Ba Peipei, Dong Zhihong, Zhang Wei, et al. Microstructure and mechanical properties of 12CrNi2 alloy steel manufactured by selective laser melting[J]. Transactions of the China Welding Institution, 2021, 42(8): 8 − 17. doi: 10.12073/j.hjxb.20210323003
|
Cheng X, Zhao Y, Qian Z, et al. Crack elimination and mechanical properties enhancement in additive manufactured Hastelloy X via in-situ chemical doping of Y2O3[J]. Materials Science & Engineering: A, 2021, 824: 141867. doi: 10.1016/j.msea.2021.141867
|
奥妮, 何子昂, 吴圣川, 等. 激光增材制造AlSi10Mg合金的力学性能研究进展[J]. 焊接学报, 2022, 43(9): 1 − 19.
Ao Ni, He Ziang, Wu Shengchuan, et al. Recent progress on the mechanical properties of laser additive manufacturing AlSi10Mg alloy[J]. Transactions of the China Welding Institution, 2022, 43(9): 1 − 19.
|
Tang D, He X, Wu B, et al. The effect of porosity defects on the mid-cycle fatigue behavior of directed energy deposited Ti-6Al-4V[J]. Theoretical and Applied Fracture Mechanics, 2022, 119: 103322. doi: 10.1016/j.tafmec.2022.103322
|
Yan Y, Yuan Z, Kaiji D, et al. The development of 3D printing technology and the current situation of controlling defects in SLM technology[J]. China Welding, 2020, 29(3): 9 − 19.
|
Nezhadfar P D, Burford E, Anderson-Wedge K, et al. Fatigue crack growth behavior of additively manufactured 17-4 PH stainless steel: Effects of build orientation and microstructure[J]. International Journal of Fatigue, 2019, 123: 168 − 179. doi: 10.1016/j.ijfatigue.2019.02.015
|
Sterling A J, Torries B, Shamsaei N, et al. Fatigue behavior and failure mechanisms of direct laser deposited Ti-6Al-4V[J]. Materials Science & Engineering: A, 2016, 655: 100 − 112. doi: 10.1016/j.msea.2015.12.026
|
Walker K F, Liu Q, Brandt M. Evaluation of fatigue crack propagation behaviour in Ti-6Al-4V manufactured by selective laser melting[J]. International Journal of Fatigue, 2017, 104: 302 − 308. doi: 10.1016/j.ijfatigue.2017.07.014
|
Pineau A, McDowell D L, Busso E P, et al. Failure of metals II: Fatigue[J]. Acta Materialia, 2016, 107: 484 − 507. doi: 10.1016/j.actamat.2015.05.050
|
Shibanuma K, Ueda K, Ito H, et al. Model for predicting fatigue life and limit of steels based on micromechanics of small crack growth[J]. Materials & Design, 2018, 139: 269 − 282.
|
洪友士, 孙成奇, 刘小龙. 合金材料超高周疲劳的机理与模型综述[J]. 力学进展, 2018, 48(1): 1 − 65.
Hong Youshi, Sun Chengqi, Liu Xiaolong. A review on mechanisms and models for very-high-cycle fatigue of metallic materials[J]. Advances in Mechanics, 2018, 48(1): 1 − 65.
|
Mlikota M, Schmauder S, Božić Ž. Calculation of the Wöhler (S-N) curve using a two-scale model[J]. International Journal of Fatigue, 2018, 114: 289 − 297. doi: 10.1016/j.ijfatigue.2018.03.018
|
Tanaka K, Mura T. A dislocation model for fatigue crack initiation[J]. Journal of Applied Mechanics, 1981, 48(1): 97 − 103. doi: 10.1115/1.3157599
|
Jezernik N, Kramberger J, Lassen T, et al. Numerical modelling of fatigue crack initiation and growth of martensitic steels[J]. Fatigue & Fracture of Engineering Materials & Structures, 2010, 33(11): 714 − 723.
|
Liu X, Lu S. A micro-crack initiation life simulation method by improving the Tanaka-Mura's model of slip behavior[J]. International Journal of Fatigue, 2021, 145: 106108. doi: 10.1016/j.ijfatigue.2020.106108
|
Meyer S, Brückner-Foit A, Möslang A. A stochastic simulation model for microcrack initiation in a martensitic steel[J]. Computational Materials Science, 2003, 26: 102 − 110. doi: 10.1016/S0927-0256(02)00409-3
|
刘凯, 王荣, 祁海, 等. 选区激光熔化成型 GH3536 合金的显微组织与拉伸性能[J]. 理化检验——物理分册, 2019, 55(1): 15 − 18.
Liu Kai, Wang Rong, Qi Hai, et al. Microstructure and tensile properties of GH3536 alloy formed by SLM[J]. Physical Testing and Chemical Analysis(Part A: Physical Testing), 2019, 55(1): 15 − 18.
|
Oliver W C, Pharr G M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments[J]. Journal of Materials Research, 1992, 7(6): 1564 − 1583. doi: 10.1557/JMR.1992.1564
|
Rodríguez R, Gutierrez I. Correlation between nanoindentation and tensile properties: influence of the indentation size effect[J]. Materials Science & Engineering: A, 2003, 361(1-2): 377 − 384. doi: 10.1016/S0921-5093(03)00563-X
|
Zhang B, Li Y, Bai Q. Defect formation mechanisms in selective laser melting: a review[J]. Chinese Journal of Mechanical Engineering, 2017, 30(3): 515 − 527. doi: 10.1007/s10033-017-0121-5
|
Tanaka K, Mura T. A micromechanical theory of fatigue crack initiation from notches[J]. Mechanics of Materials, 1982, 1(1): 63 − 73. doi: 10.1016/0167-6636(82)90024-2
|
[1] | ZHAO Qiu, TANG Kun, LI Yinghao, WU Weiqing. Fatigue crack initiation simulation of weld toe based on the Roe-Siegmund cyclic cohesive zone model[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(3): 61-67. DOI: 10.12073/j.hjxb.20230317003 |
[2] | DENG Caiyan, LIU Geng, GONG Baoming, LIU Yong. Fatigue crack initiation life prediction based on Tanaka-Mura dislocation model[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(1): 30-37. DOI: 10.12073/j.hjxb.20200706003 |
[3] | FU Lei, SHAN Long, WEN Yushuang, WANG Ping, FANG Hongyuan. Characterization of hydrogen gas pressure inner hydrogen induced crack cavity using fracture mechanics theory and finite element method[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(11): 8-12. DOI: 10.12073/j.hjxb.2019400280 |
[4] | JING Hongyang<sup>1,2</sup>, XU Jingjing<sup>1,2</sup>, XU Lianyong<sup>1,2</sup>, HAN Yongdian<sup>1,2</sup>, ZHAO Lei<sup>1,2</sup>. Finite element simulation of the restraint intensity of rigid butt-jointed cracking specimen and VRC specimen[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(8): 1-5. DOI: 10.12073/j.hjxb.2018390190 |
[5] | XING Jie1, HAN Yongdian1,2, XU Lianyong1,2, JING Hongyang2, LI Congcheng1, Zhao Lei2. High cycle and low cycle hybrid fatigue damage based on continuum damage mechanics[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(7): 63-66. DOI: 10.12073/j.hjxb.20150708001 |
[6] | ZHANG Wen, JING Hongyang, XU Lianyong, ZHAO Lei, HAN Yongdian. Prediction of creep crack initiation time in steel pipes with embedded spherical defects[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(2): 75-78. |
[7] | WANG Shang, TIAN Yanhong, HAN Chun, LIU YangZhi. Effect of temperature distribution of CBGA components on fatigue life of solder joint by FEA[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(11): 113-118. |
[8] | LI Congcheng, JING Hongyang, XU Lianyong, HAN Yongdian, ZHANG Wen. Numerical simulation of crack initiation under creep-fatigue interaction in P92 steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(8): 5-8. |
[9] | TONG Chuan, ZENG Shengkui, CHEN Yunxia. Finite element analysis simulations of life prediction for PBGA soldered joints under thermal cycling[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (10): 89-92. |
[10] | Ren Zhenan, Zhou Zhenfeng, Sun Daqian. Dynamic observation of cold crack initiation and propagation in SG cast iron weld[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1993, (3): 172-178. |
1. |
张超,周猛兵,崔雷,陶欣,王军,王伟,刘永长. 9Cr-1.5W-0.15Ta耐热钢搅拌摩擦焊焊缝组织和冲击性能分析. 焊接学报. 2024(04): 36-42+131 .
![]() | |
2. |
王猛,张立平,赵琳瑜,吴军,熊然,蒙永胜,李军红. 增材制造和锻造TC11钛合金激光焊接头组织与力学性能. 焊接学报. 2023(10): 102-110+138-139 .
![]() |