Advanced Search
WU Peng, WANG Yiping, YANG Dongsheng, FENG Jiayun, TIAN Yanhong. Molecular dynamics simulation study of sintering mechanism and thermal conductivity of nano-Ag particles[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(12): 1-7. DOI: 10.12073/j.hjxb.20230613002
Citation: WU Peng, WANG Yiping, YANG Dongsheng, FENG Jiayun, TIAN Yanhong. Molecular dynamics simulation study of sintering mechanism and thermal conductivity of nano-Ag particles[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(12): 1-7. DOI: 10.12073/j.hjxb.20230613002

Molecular dynamics simulation study of sintering mechanism and thermal conductivity of nano-Ag particles

More Information
  • Received Date: June 12, 2023
  • Available Online: September 27, 2023
  • Nanosilver paste can achieve low-temperature sintering and high-temperature service, due to its special size effect and high specific surface area, which has a broad application prospect in the third-generation semiconductor packaging. However, the sintering mechanism of nanoparticles has not been clear and the thermal conductivity has decreased significantly after sintering, which needs to be further investigated. In this paper, the sintering process of silver nanoparticles was simulated by molecular dynamics simulation. The correctness of the potential function was verified by the calculation of thermal conductivity, firstly. And then the microstructural changes of silver nanoparticles were observed, the relationship between the sintering neck growth length and the sintering time was obtained, and the change of the phonon thermal conductivity at the sintering neck was also calculated. Finally, the experimental silver nanoparticles with the same characteristics as the simulation results were observed by the transmission electron microscope. The results showed that the fivefold twins were the stable structure of nanoparticles after sintering, the sintering neck length growth during nanoparticle sintering was a power function of time, and the microstructure at the sintering neck reduced the thermal conductivity of nanosilver by 4.42%.

  • [1]
    Chen Hongtao, Hu Tianqi, Li Mingyu. Cu@Sn core–shell structure powder preform for high-temperature applications based on transient liquid phase bonding[J]. IEEE Transactions on Power Electronics, 2017, 32(1): 441 − 451. doi: 10.1109/TPEL.2016.2535365
    [2]
    杨东升, 张贺, 田艳红, 等. 电子封装微纳连接技术即失效行为研究进展[J]. 焊接学报, 2022, 43(11): 126 − 136.

    Yang Dongsheng, Zhang He, Tian Yanhong, et al. Progress in the study of micro-nano connection technology, i. e. failure behaviour, in electronic packaging[J]. Transactions of the China Welding Institution, 2022, 43(11): 126 − 136.
    [3]
    Zhong Ying, An Rong, Wang Chunqing. Low temperature sintering Cu6Sn5 nanoparticles for superplastic and super-uniform high temperature circuit interconnections[J]. Small, 2015, 11(33): 4097 − 4103. doi: 10.1002/smll.201500896
    [4]
    Liu Hao, Ma Rui, Wang Jianqiang, et al. Application of silver nanoparticles in electrically conductive adhesives with silver micro flakes[J]. China Welding, 2022, 31(1): 23 − 28.
    [5]
    李红, 袁俊丽, 粟卓新. 纳米连接过程的分子动力学模拟研究进展[J]. 中国机械工程, 2019, 30(4): 486 − 493.

    Li Hong, Yuan Junli, Li Zhuoxin. Advances in molecular dynamics simulation of nano-connectivity processes[J]. Chinese Journal of Mechanical Engineering, 2019, 30(4): 486 − 493.
    [6]
    裴淳. 一种基于空间点过程的银膏焊层等效弹性模量的仿真预测方法[J]. 电子元件与材料, 2020, 39(6): 80 − 83. doi: 10.14106/j.cnki.1001-2028.2020.06.014

    Pei Chun. A spatial point process based simulation prediction method for equivalent elastic modulus of silver paste solder layers[J]. Electronic Components & Materials, 2020, 39(6): 80 − 83. doi: 10.14106/j.cnki.1001-2028.2020.06.014
    [7]
    Carr J, Milhert X, Gadaud P, et al. Quantitative characterization of porosity and determination of elastic modules for sintered micro-silver joints[J]. Journal of Materials Processing Technology, 2015, 225: 19 − 23. doi: 10.1016/j.jmatprotec.2015.03.037
    [8]
    刘彦立. 基于孔洞特征的芯片互联烧结组织性能数值模拟[D]. 哈尔滨: 哈尔滨理工大学, 2021.

    Liu Yanli . Numerical simulation of chip interconnect sintering tissue properties based on hole characteristics[D]. Harbin: Harbin University of Science and Technology, 2021
    [9]
    Wang M, Mei Y, Li X, et al. Die-attach on nickel substrate by pressureless sintering a trimodal silver paste[J]. Materials Letters, 2019, 253: 131 − 135. doi: 10.1016/j.matlet.2019.06.041
    [10]
    Li M, Xiao Y, Zhang Z, et al. Bimodal sintered silver nanoparticle paste with ultrahigh thermal conductivity and shear strength for high temperature thermal interface material applications[J]. ACS Applied Materials & Interfaces, 2015, 7(17): 9157 − 9168.
    [11]
    Ide E, Angata S, Hirose A, et al. Metal–metal bonding process using Ag metallo-organic nanoparticles[J]. Acta Materialia, 2005, 53(8): 2385 − 2393. doi: 10.1016/j.actamat.2005.01.047
    [12]
    Bai J G, Zhiye Z Z, Calata J N, et al. Low-temperature sintered nanoscale silver as a novel semiconductor device-metallized substrate interconnect material[J]. IEEE Transactions on Components and Packaging Technologies, 2006, 29(3): 589 − 593. doi: 10.1109/TCAPT.2005.853167
    [13]
    贺晓斌. 金属纳米线连接分子动力学模拟[D]. 哈尔滨: 哈尔滨工业大学, 2013.

    He Xiaobin . Molecular dynamics simulation of metal nanowire connections[D]. Harbin: Harbin Institute of Technology, 2013.
    [14]
    吴茂, 常玲玲, 崔亚男. 纳米金颗粒融化与烧结过程的分子动力学模拟[J]. 粉末冶金材料科学与工程, 2013, 18(6): 775 − 782.

    Wu Mao, Chang Lingling, Cui Yanan. Molecular dynamics simulation of the melting and sintering process of gold nanoparticles[J]. Powder Metallurgy Materials Science and Engineering, 2013, 18(6): 775 − 782.
    [15]
    Suzuki T, Terasaki T, Kawana Y, et al. Effect of manufacturing process on micro-deformation behavion of sintered-silver dia-attach material[J]. IEEE Transactions on Device and Material Reliability, 2016, 16: 588 − 596. doi: 10.1109/TDMR.2016.2614510
    [16]
    Jiang Shan, Zhang Yuwen, Hao Peng. Molecular dynamics study of neck growth in laser sintering of hollow silver nanoparticles with different heating rates[J]. Journal of Physics D:Applied Physics, 2013, 46: 335302. doi: 10.1088/0022-3727/46/33/335302
    [17]
    王鑫, 鲁丹, 申胜平. Ni/Al 层合结构热传导性能的非平衡分子动力学研究[J]. 中国科学: 物理学 力学 天文学, 2014, 44: 506–513.

    Wang Xin , Lu Dan, Shen Shengping . Non-equilibrium molecular dynamics study of the thermal conductivity of Ni/Al laminated structures[J] Science China: Physics, Mechanics & Astronomy, 2014, 44: 506-513.
    [18]
    Lange A P, Samanta A, Majidi H, et al. Dislocation mediated alignment during metal nanoparticle Coalescence[J]. Acta Materialia, 2016(120): 364 − 378.
    [19]
    Balasubramanian G, Puri I K. Heat conduction across a solid-solid interface: Understanding nanoscale interfacial effects on thermal resistance[J]. Applied Physics Letters, 2011, 99(1): 013116. doi: 10.1063/1.3607477
    [20]
    Gao Y F, Meng Q Y. Molecular dynamics simulation on thermal conductivity of one dimenison nanomaterials[J]. Acta Metallurgica Sinica, 2010, 46(10): 1244 − 1249.
    [21]
    Sun Zhijian, Li Jiaxiong, Yu Michael. A review of the thermal conductivity of silver-epoxy nanocomposites as encapsulation material for packaging application[J]. Chemical Engineering Journal, 2022, 10(15): 137319.
    [22]
    Fang Z Z, Wang H. Densification and grain growth during sintering of nanosized particles[J]. International Materials Reviews, 2013, 53(6): 326 − 352.
    [23]
    王尚. 银纳米线导电薄膜制备与电镀修饰及性能[D]. 哈尔滨: 哈尔滨工业大学, 2019.

    Wang Shang. Preparation and electroplating modification of silver nanowire conductive thin films and properties[D]. Harbin: Harbin Institute of Technology, 2019.
  • Cited by

    Periodical cited type(2)

    1. 陈澄,尹红波,王成,倪大海,谢璐,曾超林. 钼铜载体与铝合金外壳的无压纳米银胶低温烧结强度. 半导体技术. 2025(01): 95-100 .
    2. 王一平,于铭涵,王润泽,佟子睿,冯佳运,田艳红. 功率器件封装纳米浆料材料与低温烧结工艺及机理研究进展. 电子与封装. 2025(03): 64-81 .

    Other cited types(0)

Catalog

    Article views (437) PDF downloads (152) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return