Citation: | BA Peipei, DONG Zhihong, ZHANG Wei, PENG Xiao. Microstructure and mechanical properties of 12CrNi2 alloy steel manufactured by selective laser melting[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(8): 8-17. DOI: 10.12073/j.hjxb.20210323003 |
袁丁, 高华兵, 孙小婧, 等. 改善金属增材制造材料组织与力学性能的方法与技术[J]. 航空制造技术, 2018, 61(10): 40 − 48.
Yuan Ding, Gao Huabing, Sun Xiaojing, et al. Methods and techniques for improving microstructure and performance of metal additively manufactured materials[J]. Aeronautical Manufacturing Technology, 2018, 61(10): 40 − 48.
|
李宏棋. 激光增材制造技术及其应用[J]. 科教导刊(中旬刊), 2019(12): 47 − 48.
Li Hongqi. Manufacturing technology of laser adding materials and its application[J]. The Guide of Science & Education, 2019(12): 47 − 48.
|
Yu Qun, Wang Cunshan, Wang Di, et al. Microstructure and properties of Ti-Zr congruent alloy fabricated by laser additive manufacturing[J]. Journal of Alloys and Compounds, 2020(834): 1 − 10.
|
Song Bo, Dong Shujuan, Deng Sihao, et al. Microstructure and tensile properties of iron parts fabricated by selective laser melting[J]. Optics & Laser Technology, 2014, 56: 451 − 460.
|
Zhang Yimin, Huang Weibo. Comparisons of 304 austenitic stainless steel manufactured by laser metal deposition and selective laser melting[J]. Journal of Manufacturing Processes, 2020, 57: 324 − 333. doi: 10.1016/j.jmapro.2020.06.042
|
Ma Mingming, Wang Zemin, Zeng Xiaoyan. A comparison on metallurgical behaviors of 316L stainless steel by selective laser melting and laser cladding deposition[J]. Materials Science and Engineering: A, 2017, 685: 265 − 273. doi: 10.1016/j.msea.2016.12.112
|
Guo Wei, Wang Hao, Peng Peng, et al. Effect of laser shock processing on oxidation resistance of laser additive manufactured Ti6Al4V titanium alloy[J]. Corrosion Science, 2020, 170: 1 − 10. doi: 10.1016/j.corsci.2020.108655
|
Wang Xiang, Zhang Linjie, Ning Jie, et al. Effect of addition of micron-sized lanthanum oxide particles on morphologies, microstructures and properties of the wire laser additively manufactured Ti–6Al–4V alloy[J]. Materials Science and Engineering: A, 2021, 803: 1 − 6. doi: 10.1016/j.msea.2020.140475
|
Han Liying, Wang Cunshan. Microstructure and properties of Ti64.51Fe26.40Zr5.86Sn2.93Y0.30 biomedical alloy fabricated by laser additive manufacturing[J]. Transactions of Nonferrous Metals Society of China, 2020, 30(12): 3274 − 3286. doi: 10.1016/S1003-6326(20)65460-7
|
Klas Solberg, Filippo Berto. The effect of defects and notches in quasi-static and fatigue loading of Inconel 718 specimens produced by selective laser melting[J]. International Journal of Fatigue, 2020, 137: 1 − 10. doi: 10.1016/j.ijfatigue.2020.105637
|
Liu Fengguang, Lin Xin, Song Menghua, et al. Microstructure and mechanical properties of laser solid formed 300M steel[J]. Journal of Alloys and Compounds, 2015, 621: 35 − 41. doi: 10.1016/j.jallcom.2014.09.111
|
Mertens R, Vrancken B, Holmstock N, et al. Influence of powder bed preheating on microstructure and mechanical properties of H13 tool steel SLM parts[J]. Physics Procedia, 2016, 83: 882 − 890. doi: 10.1016/j.phpro.2016.08.092
|
Ebrahimnia Mohamad, Xie Yujiang, Chi Changtai. Effect of laser power and deposition environment on the microstructure and properties of direct laser metal-deposited 12CrNi2 steel[J]. Acta Metallurgica Sinica(English Letters), 2020, 3(4): 60 − 70.
|
Cao Lin, Chen Suiyuan, Wei Mingwei, et al. Effect of laser energy density on defects behavior of direct laser depositing 24CrNiMo alloy steel[J]. Optics & Laser Technology, 2019, 111: 541 − 553.
|
Wang Qing, Zhang Zhihui, Tong Xin, et al. Effects of process parameters on the microstructure and mechanical properties of 24CrNiMo steel fabricated by selective laser melting[J]. Optics & Laser Technology, 2020, 128: 1 − 10.
|
杨晨, 董志宏, 迟长泰, 等. 选区激光熔化成形24CrNiMo合金钢的组织结构与力学性能[J]. 中国激光, 2020, 47(5): 389 − 399.
Yang Chen, Dong Zhihong, Chi Changtai, et al. Microstructure and Mechanical Properties of 24CrNiMo Alloy Steel Formed by Selective Laser Melting[J]. Chinese Journal of Lasers, 2020, 47(5): 389 − 399.
|
Tang Xu, Zhang Song, Zhang Chunhua, et al. Optimization of laser energy density and scanning strategy on the forming quality of 24CrNiMo low alloy steel manufactured by SLM[J]. Materials Characterization, 2020, 170: 1 − 10. doi: 10.1016/j.matchar.2020.110718
|
Dong Zhihong, Zhang Wei, Kang Hongwei, et al. Surface hardening of laser melting deposited 12CrNi2 alloy steel by enhanced plasma carburizing via hollow cathode discharge[J]. Surface & Coatings Technology, 2020, 397: 1 − 10.
|
张炜, 董志宏, 亢红伟, 等. 回火对激光增材制造12CrNi2合金钢显微组织和力学性能的影响[J]. 材料热处理学报, 2020, 41(2): 59 − 66.
Zhang Wei, Dong Zhihong, Kang Hongwei, et al. Effect of tempering on microstructure and mechanical properties of the 12CrNi2 alloy steel prepared by laser additive manufacturing[J]. Transactions of Materials and Heat Treatment, 2020, 41(2): 59 − 66.
|
Zhang Wei, Dong Zhihong, Kang Hongwei, et al. Effect of tempering on microstructure and mechanical properties of the 12CrNi2 alloy steel prepared by laser additive manufacturing[J]. Transactions of Materials and Heat Treatment, 2020, 41(2): 59 − 66.
|
Zhang Wei, Dong Zhihong, Kang Hongwei, et al. Enhancement of strength–ductility balance of the laser melting deposited 12CrNi2 alloy steel via multi-step quenching treatment[J]. Acta Metallurgica Sinica (English Letters), 2021, 34(9): 1234 − 1244.
|
Zhou Yue, Chen Suiyuan, Chen Xueting, et al. The evolution of bainite and mechanical properties of direct laser deposition 12CrNi2 alloy steel at different laser power[J]. Materials Science and Engineering, 2019, 742(10): 150 − 161.
|
Guan Tingting, Chen Suiyuan, Chen Xueting, et al. Effect of laser incident energy on microstructures and mechanical properties of 12CrNi2Y alloy steel by direct laser deposition[J]. Journal of Materials Science & Technology, 2019, 35(2): 395 − 402.
|
Xu Y H, Zhang C H, Zhang S, et al. Scanning velocity influence on microstructure evolution and mechanical properties of laser melting deposited 12CrNi2 low alloy steel[J]. Vacuum, 2020, 177: 1 − 10. doi: 10.1016/j.vacuum.2020.109387
|
Cui X, Zhang S, Wang C, et al. Effects of stress-relief heat treatment on the microstructure and fatigue property of a laser additive manufactured 12CrNi2 low alloy steel[J]. Materials Science and Engineering A, 2020, 791: 1 − 10. doi: 10.1016/j.msea.2020.139738
|
Zhang W, Dong Z, Kang H, et al. Effect of various quenching treatments on microstructure and mechanical behavior of a laser additively manufactured 12CrNi2 alloy steel[J]. Journal of Materials Processing Technology, 2021, 288: 1 − 10. doi: 10.1016/j.jmatprotec.2020.116907
|
谷秀锐, 赵英利, 白丽娟, 等. 彩色金相在显微组织分析中的应用[J]. 理化检验(物理分册), 2018, 54(5): 322 − 325,328.
Gu Xiurui, Zhao Yingli, Bai Lijuan, et al. Application of color m etallography in microstructure analysis[J]. Physical Testing and Chemical Analysis(Part A: Physical Testing), 2018, 54(5): 322 − 325,328.
|
Girault E, Jacques P, Harlet P, et al. Metallographic methods for revealing the multiphase microstructure of TRIP-assisted steels[J]. Materials Characterization, 1998, 40(2): 111 − 118. doi: 10.1016/S1044-5803(97)00154-X
|
Luo Xiang, Chen Xiaohua, Wang Tao, et al. Effect of morphologies of martensite-austenite constituents on impact toughness in intercritically reheated coarse-grained heat-affected zone of HSLA steel[J]. Materials Science and Engineering, 2018, 710(5): 192 − 199.
|
Cherry J A, Mehmood H M, Lavery N P, et al. Investigation into the effect of process parameters on microstructural and physical properties of 316L stainless steel parts by selective laser melting[J]. International Journal of Advanced Manufacturing Technology, 2015, 76(5-8): 869 − 879. doi: 10.1007/s00170-014-6297-2
|
Suman Das. Physical aspects of process control in selective laser sintering of metals[J]. Advanced Engineering Materials, 2003, 5(10): 701 − 711. doi: 10.1002/adem.200310099
|
张丹, 王猛, 李闯闯. TA15钛合金选区激光熔化成形工艺研究[J]. 铸造技术, 2020, 41(5): 407 − 412.
Zhang Dan, Wang Meng, Li Chuangchuang. Effect of processing parameters on selective laser melting of TA15 titanium alloy[J]. Foundry Technology, 2020, 41(5): 407 − 412.
|
魏恺文, 王泽敏, 曾晓雁. AZ91D镁合金在激光选区熔化成形中的元素烧损[J]. 金属学报, 2016, 52(2): 184 − 190. doi: 10.11900/0412.1961.2015.00212
Wei Kaiwen, Wang Zemin, Zeng Xiaoyan. Element loss of AZ91D magnesium alloy during selective laser melting process[J]. Acta Metallurgica, 2016, 52(2): 184 − 190. doi: 10.11900/0412.1961.2015.00212
|
Zhao Xuan, Lü Yaohui, Dong Shiyun, et al. The martensitic strengthening of 12CrNi2 low-alloy steel using a novel scanning strategy during direct laser deposition[J]. Optics & Laser Technology, 2020, 132: 1 − 10.
|
[1] | LU Yi, HE Xiaocong, XING Baoying, ZHANG Xianlian. Effect of annealing treatment on the fatigue behavior of titanium alloy self-piecing riveted joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(3): 124-128. DOI: 10.12073/j.hjxb.2018380083 |
[2] | CHEN Zhongyi, QIAO Weichao, MA Yonglin, XING Shuqing. Finite element analysis on master cylinder welding stress field of 80,000 tons of die forging press[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(5): 1-6. DOI: 10.12073/j.hjxb.20170501 |
[3] | YU Huiping, YUAN Yue, HAN Changlu, LI Xiaoyang. Analysis of test about residual stress of super steel spot welding under different process[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(9): 35-38. |
[4] | DING Sansan, LI Qiang, GOU Guoqing. Effect of residual stress on fatigue behavior of welded joint of A7N01 aluminum alloy for high-speed trcion[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(9): 23-28. |
[5] | ZHAO Lun, HE Xiaocong, ZHANG Xianlian. Fretting wear mechanism and fatigue behavior of titanium alloy self-piercing riveted joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(7): 88-92. |
[6] | XUE Bin, ZHANG Tianhui, XU Renping, WANG Shiyue. Effect of residual compressive stress field on fatigue crack growth of B780CF steel welded joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(6): 103-108. |
[7] | ZHU Xiaogang, WANG Lianfeng, QIAO Fengbin, GUO Lijie. Fatigue failure analysis of 6061-T6 aluminum alloy refilled friction stir spot welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(4): 91-94. |
[8] | WU Liangchen, WANG Dongpo, WANG Sheng, DENG Caiyan. Fatigue behavior of welded joints under combined cycle fatigue with ultrasonic component[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (5): 9-12. |
[9] | XU Wei, LIU Xuesong, FANG Hongyuan, XU Wenli, YANG Jianguo. Feasibility of controlling welding residual stress and distortion with tailing electromagnetic force[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (8): 65-68. |
[10] | Gao Jiming, Huang Yuhua, Liu Romgxuan, Chen Jiaquan. Fatigue Crack Growth Rate in Weld Metal of Steel HQ-60 Under High Stress Ratio[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1995, (4): 190-195. |
1. |
陈文斌. 铝钢搅拌摩擦焊接头显微组织及性能研究. 农机使用与维修. 2025(04): 21-24 .
![]() | |
2. |
湛利华,朱喜霖,杨有良,汤智茂. 2219铝合金搅拌摩擦焊接头的蠕变时效行为研究. 精密成形工程. 2024(07): 48-56 .
![]() | |
3. |
周进鹏,马杰,陆晓峰,朱晓磊,王健. 喷雾辅助FSW焊接RAFM钢数值模拟与性能. 焊接学报. 2022(09): 104-112+120 .
![]() |