Advanced Search
BA Peipei, DONG Zhihong, ZHANG Wei, PENG Xiao. Microstructure and mechanical properties of 12CrNi2 alloy steel manufactured by selective laser melting[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(8): 8-17. DOI: 10.12073/j.hjxb.20210323003
Citation: BA Peipei, DONG Zhihong, ZHANG Wei, PENG Xiao. Microstructure and mechanical properties of 12CrNi2 alloy steel manufactured by selective laser melting[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(8): 8-17. DOI: 10.12073/j.hjxb.20210323003

Microstructure and mechanical properties of 12CrNi2 alloy steel manufactured by selective laser melting

More Information
  • Corresponding author:

    DONG Zhihong, E-mail: zhdong@imr.ac.cn

  • Received Date: March 22, 2021
  • Available Online: October 24, 2021
  • 12CrNi2 alloy steel was additively manufactured using selective laser melting (SLM) technology. The influence of laser energy density on the microstructure and mechanical properties of the SLM-formed alloy steel has been studied using methods such as metallographic microscope, scanning electron microscope, transmission electron microscope, microhardness tester, and room temperature tensile test. The results demonstrate that the macrostructure of the SLM-formed alloy steel can be divided into two parts: molten pool zone and heat affected zone. The microstructure consists of tempered martensite and a small amount of retained austenite. With the increase of laser energy density (EV), the pore defects in the SLM-formed alloy steel are gradually reduced, and the density is gradually increased, which can reach 99.87%. In the meanwhile, the molten pool volume and lifetime increase and the cooling rate decreases, resulting in the widening of the tempered martensite lath and the heat-affected zone; further, the microhardness and strength of the alloy steel are decreased, and the plasticity is increased. When EV is 81.34 J/mm3, the SLM-formed 12CrNi2 alloy steel exhibits optimal tensile properties, its tensile strength and yield strength are 1098 MPa and 882 MPa, respectively, and its elongation is 20.07%. The comprehensive mechanical properties of 12CrNi2 alloy steel formed by SLM technology are better than those formed by laser melting deposition (LMD) and casting technology.
  • 袁丁, 高华兵, 孙小婧, 等. 改善金属增材制造材料组织与力学性能的方法与技术[J]. 航空制造技术, 2018, 61(10): 40 − 48.

    Yuan Ding, Gao Huabing, Sun Xiaojing, et al. Methods and techniques for improving microstructure and performance of metal additively manufactured materials[J]. Aeronautical Manufacturing Technology, 2018, 61(10): 40 − 48.
    李宏棋. 激光增材制造技术及其应用[J]. 科教导刊(中旬刊), 2019(12): 47 − 48.

    Li Hongqi. Manufacturing technology of laser adding materials and its application[J]. The Guide of Science & Education, 2019(12): 47 − 48.
    Yu Qun, Wang Cunshan, Wang Di, et al. Microstructure and properties of Ti-Zr congruent alloy fabricated by laser additive manufacturing[J]. Journal of Alloys and Compounds, 2020(834): 1 − 10.
    Song Bo, Dong Shujuan, Deng Sihao, et al. Microstructure and tensile properties of iron parts fabricated by selective laser melting[J]. Optics & Laser Technology, 2014, 56: 451 − 460.
    Zhang Yimin, Huang Weibo. Comparisons of 304 austenitic stainless steel manufactured by laser metal deposition and selective laser melting[J]. Journal of Manufacturing Processes, 2020, 57: 324 − 333. doi: 10.1016/j.jmapro.2020.06.042
    Ma Mingming, Wang Zemin, Zeng Xiaoyan. A comparison on metallurgical behaviors of 316L stainless steel by selective laser melting and laser cladding deposition[J]. Materials Science and Engineering: A, 2017, 685: 265 − 273. doi: 10.1016/j.msea.2016.12.112
    Guo Wei, Wang Hao, Peng Peng, et al. Effect of laser shock processing on oxidation resistance of laser additive manufactured Ti6Al4V titanium alloy[J]. Corrosion Science, 2020, 170: 1 − 10. doi: 10.1016/j.corsci.2020.108655
    Wang Xiang, Zhang Linjie, Ning Jie, et al. Effect of addition of micron-sized lanthanum oxide particles on morphologies, microstructures and properties of the wire laser additively manufactured Ti–6Al–4V alloy[J]. Materials Science and Engineering: A, 2021, 803: 1 − 6. doi: 10.1016/j.msea.2020.140475
    Han Liying, Wang Cunshan. Microstructure and properties of Ti64.51Fe26.40Zr5.86Sn2.93Y0.30 biomedical alloy fabricated by laser additive manufacturing[J]. Transactions of Nonferrous Metals Society of China, 2020, 30(12): 3274 − 3286. doi: 10.1016/S1003-6326(20)65460-7
    Klas Solberg, Filippo Berto. The effect of defects and notches in quasi-static and fatigue loading of Inconel 718 specimens produced by selective laser melting[J]. International Journal of Fatigue, 2020, 137: 1 − 10. doi: 10.1016/j.ijfatigue.2020.105637
    Liu Fengguang, Lin Xin, Song Menghua, et al. Microstructure and mechanical properties of laser solid formed 300M steel[J]. Journal of Alloys and Compounds, 2015, 621: 35 − 41. doi: 10.1016/j.jallcom.2014.09.111
    Mertens R, Vrancken B, Holmstock N, et al. Influence of powder bed preheating on microstructure and mechanical properties of H13 tool steel SLM parts[J]. Physics Procedia, 2016, 83: 882 − 890. doi: 10.1016/j.phpro.2016.08.092
    Ebrahimnia Mohamad, Xie Yujiang, Chi Changtai. Effect of laser power and deposition environment on the microstructure and properties of direct laser metal-deposited 12CrNi2 steel[J]. Acta Metallurgica Sinica(English Letters), 2020, 3(4): 60 − 70.
    Cao Lin, Chen Suiyuan, Wei Mingwei, et al. Effect of laser energy density on defects behavior of direct laser depositing 24CrNiMo alloy steel[J]. Optics & Laser Technology, 2019, 111: 541 − 553.
    Wang Qing, Zhang Zhihui, Tong Xin, et al. Effects of process parameters on the microstructure and mechanical properties of 24CrNiMo steel fabricated by selective laser melting[J]. Optics & Laser Technology, 2020, 128: 1 − 10.
    杨晨, 董志宏, 迟长泰, 等. 选区激光熔化成形24CrNiMo合金钢的组织结构与力学性能[J]. 中国激光, 2020, 47(5): 389 − 399.

    Yang Chen, Dong Zhihong, Chi Changtai, et al. Microstructure and Mechanical Properties of 24CrNiMo Alloy Steel Formed by Selective Laser Melting[J]. Chinese Journal of Lasers, 2020, 47(5): 389 − 399.
    Tang Xu, Zhang Song, Zhang Chunhua, et al. Optimization of laser energy density and scanning strategy on the forming quality of 24CrNiMo low alloy steel manufactured by SLM[J]. Materials Characterization, 2020, 170: 1 − 10. doi: 10.1016/j.matchar.2020.110718
    Dong Zhihong, Zhang Wei, Kang Hongwei, et al. Surface hardening of laser melting deposited 12CrNi2 alloy steel by enhanced plasma carburizing via hollow cathode discharge[J]. Surface & Coatings Technology, 2020, 397: 1 − 10.
    张炜, 董志宏, 亢红伟, 等. 回火对激光增材制造12CrNi2合金钢显微组织和力学性能的影响[J]. 材料热处理学报, 2020, 41(2): 59 − 66.

    Zhang Wei, Dong Zhihong, Kang Hongwei, et al. Effect of tempering on microstructure and mechanical properties of the 12CrNi2 alloy steel prepared by laser additive manufacturing[J]. Transactions of Materials and Heat Treatment, 2020, 41(2): 59 − 66.
    Zhang Wei, Dong Zhihong, Kang Hongwei, et al. Effect of tempering on microstructure and mechanical properties of the 12CrNi2 alloy steel prepared by laser additive manufacturing[J]. Transactions of Materials and Heat Treatment, 2020, 41(2): 59 − 66.
    Zhang Wei, Dong Zhihong, Kang Hongwei, et al. Enhancement of strength–ductility balance of the laser melting deposited 12CrNi2 alloy steel via multi-step quenching treatment[J]. Acta Metallurgica Sinica (English Letters), 2021, 34(9): 1234 − 1244.
    Zhou Yue, Chen Suiyuan, Chen Xueting, et al. The evolution of bainite and mechanical properties of direct laser deposition 12CrNi2 alloy steel at different laser power[J]. Materials Science and Engineering, 2019, 742(10): 150 − 161.
    Guan Tingting, Chen Suiyuan, Chen Xueting, et al. Effect of laser incident energy on microstructures and mechanical properties of 12CrNi2Y alloy steel by direct laser deposition[J]. Journal of Materials Science & Technology, 2019, 35(2): 395 − 402.
    Xu Y H, Zhang C H, Zhang S, et al. Scanning velocity influence on microstructure evolution and mechanical properties of laser melting deposited 12CrNi2 low alloy steel[J]. Vacuum, 2020, 177: 1 − 10. doi: 10.1016/j.vacuum.2020.109387
    Cui X, Zhang S, Wang C, et al. Effects of stress-relief heat treatment on the microstructure and fatigue property of a laser additive manufactured 12CrNi2 low alloy steel[J]. Materials Science and Engineering A, 2020, 791: 1 − 10. doi: 10.1016/j.msea.2020.139738
    Zhang W, Dong Z, Kang H, et al. Effect of various quenching treatments on microstructure and mechanical behavior of a laser additively manufactured 12CrNi2 alloy steel[J]. Journal of Materials Processing Technology, 2021, 288: 1 − 10. doi: 10.1016/j.jmatprotec.2020.116907
    谷秀锐, 赵英利, 白丽娟, 等. 彩色金相在显微组织分析中的应用[J]. 理化检验(物理分册), 2018, 54(5): 322 − 325,328.

    Gu Xiurui, Zhao Yingli, Bai Lijuan, et al. Application of color m etallography in microstructure analysis[J]. Physical Testing and Chemical Analysis(Part A: Physical Testing), 2018, 54(5): 322 − 325,328.
    Girault E, Jacques P, Harlet P, et al. Metallographic methods for revealing the multiphase microstructure of TRIP-assisted steels[J]. Materials Characterization, 1998, 40(2): 111 − 118. doi: 10.1016/S1044-5803(97)00154-X
    Luo Xiang, Chen Xiaohua, Wang Tao, et al. Effect of morphologies of martensite-austenite constituents on impact toughness in intercritically reheated coarse-grained heat-affected zone of HSLA steel[J]. Materials Science and Engineering, 2018, 710(5): 192 − 199.
    Cherry J A, Mehmood H M, Lavery N P, et al. Investigation into the effect of process parameters on microstructural and physical properties of 316L stainless steel parts by selective laser melting[J]. International Journal of Advanced Manufacturing Technology, 2015, 76(5-8): 869 − 879. doi: 10.1007/s00170-014-6297-2
    Suman Das. Physical aspects of process control in selective laser sintering of metals[J]. Advanced Engineering Materials, 2003, 5(10): 701 − 711. doi: 10.1002/adem.200310099
    张丹, 王猛, 李闯闯. TA15钛合金选区激光熔化成形工艺研究[J]. 铸造技术, 2020, 41(5): 407 − 412.

    Zhang Dan, Wang Meng, Li Chuangchuang. Effect of processing parameters on selective laser melting of TA15 titanium alloy[J]. Foundry Technology, 2020, 41(5): 407 − 412.
    魏恺文, 王泽敏, 曾晓雁. AZ91D镁合金在激光选区熔化成形中的元素烧损[J]. 金属学报, 2016, 52(2): 184 − 190. doi: 10.11900/0412.1961.2015.00212

    Wei Kaiwen, Wang Zemin, Zeng Xiaoyan. Element loss of AZ91D magnesium alloy during selective laser melting process[J]. Acta Metallurgica, 2016, 52(2): 184 − 190. doi: 10.11900/0412.1961.2015.00212
    Zhao Xuan, Lü Yaohui, Dong Shiyun, et al. The martensitic strengthening of 12CrNi2 low-alloy steel using a novel scanning strategy during direct laser deposition[J]. Optics & Laser Technology, 2020, 132: 1 − 10.
  • Related Articles

    [1]LU Yi, HE Xiaocong, XING Baoying, ZHANG Xianlian. Effect of annealing treatment on the fatigue behavior of titanium alloy self-piecing riveted joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(3): 124-128. DOI: 10.12073/j.hjxb.2018380083
    [2]CHEN Zhongyi, QIAO Weichao, MA Yonglin, XING Shuqing. Finite element analysis on master cylinder welding stress field of 80,000 tons of die forging press[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(5): 1-6. DOI: 10.12073/j.hjxb.20170501
    [3]YU Huiping, YUAN Yue, HAN Changlu, LI Xiaoyang. Analysis of test about residual stress of super steel spot welding under different process[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(9): 35-38.
    [4]DING Sansan, LI Qiang, GOU Guoqing. Effect of residual stress on fatigue behavior of welded joint of A7N01 aluminum alloy for high-speed trcion[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(9): 23-28.
    [5]ZHAO Lun, HE Xiaocong, ZHANG Xianlian. Fretting wear mechanism and fatigue behavior of titanium alloy self-piercing riveted joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(7): 88-92.
    [6]XUE Bin, ZHANG Tianhui, XU Renping, WANG Shiyue. Effect of residual compressive stress field on fatigue crack growth of B780CF steel welded joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(6): 103-108.
    [7]ZHU Xiaogang, WANG Lianfeng, QIAO Fengbin, GUO Lijie. Fatigue failure analysis of 6061-T6 aluminum alloy refilled friction stir spot welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(4): 91-94.
    [8]WU Liangchen, WANG Dongpo, WANG Sheng, DENG Caiyan. Fatigue behavior of welded joints under combined cycle fatigue with ultrasonic component[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (5): 9-12.
    [9]XU Wei, LIU Xuesong, FANG Hongyuan, XU Wenli, YANG Jianguo. Feasibility of controlling welding residual stress and distortion with tailing electromagnetic force[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (8): 65-68.
    [10]Gao Jiming, Huang Yuhua, Liu Romgxuan, Chen Jiaquan. Fatigue Crack Growth Rate in Weld Metal of Steel HQ-60 Under High Stress Ratio[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1995, (4): 190-195.
  • Cited by

    Periodical cited type(3)

    1. 陈文斌. 铝钢搅拌摩擦焊接头显微组织及性能研究. 农机使用与维修. 2025(04): 21-24 .
    2. 湛利华,朱喜霖,杨有良,汤智茂. 2219铝合金搅拌摩擦焊接头的蠕变时效行为研究. 精密成形工程. 2024(07): 48-56 .
    3. 周进鹏,马杰,陆晓峰,朱晓磊,王健. 喷雾辅助FSW焊接RAFM钢数值模拟与性能. 焊接学报. 2022(09): 104-112+120 . 本站查看

    Other cited types(1)

Catalog

    Article views (406) PDF downloads (39) Cited by(4)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return