Citation: | ZHONG Guangsheng, WEI Guoqian, YAN Mengyu, FENG Zibin. Study on the influence of weld toe radius on the evolution behavior of fatigue short cracks[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(11): 88-95. DOI: 10.12073/j.hjxb.20221212004 |
The weld toe radius has a significant impact on the fatigue performance of welded structures. By integrating the Voronoi tessellation method and submodeling technique, a two-dimensional microscopic representative volume element (RVE) submodel was constructed at the macroscopic cruciform welded joint weld toe using a viscoplastic rate-related crystal plasticity constitutive model. The average fatigue indicator parameters of the slip band were calculated to determine the nucleation life and extension life of the slip band. The formation of cracks was simulated by reducing the elastic modulus of the slip band with the shortest life, realizing the simulation of macro-micro scale fatigue short crack evolution behavior. Analysis shows: when the weld toe radius is less than 0.5 mm, the nucleation life increases with the increase of the weld toe radius; when the weld toe radius is greater than 0.5 mm, the nucleation life mainly fluctuates due to the influence of grain shape and orientation. The weld toe RVE submodel can be divided into the weld toe arc influence zone and the non-influence zone. In the influence zone, the crack evolution behavior is mainly affected by the weld toe radius, with different nucleation positions and the extension rate increases linearly with the number of crack cycles; as the crack extends, the influence of the weld toe radius gradually decreases, and the influence of grain shape and orientation gradually increases; when the crack extends to the non-influence zone, the crack evolution behavior is mainly affected by the grain shape and orientation, and the extension rate shows significant fluctuations.
[1] |
魏国前, 罗玉兵, 黄发超, 等. 考虑焊趾形貌的十字焊接接头疲劳评定研究[J]. 机械强度, 2018, 40(2): 418 − 423. doi: 10.16579/j.issn.1001.9669.2018.02.026
Wei Guoqian, Luo Yubing, Huang Fachao, et al. Study on fatigu valuation of cross welded joint considering the appearance of welded toe[J]. Journal of Mechanical Strength, 2018, 40(2): 418 − 423. doi: 10.16579/j.issn.1001.9669.2018.02.026
|
[2] |
成立夫, 魏国前, 胡珂, 等. 基于FIP的焊趾短裂纹行为仿真[J]. 焊接学报, 2020, 41(12): 7 − 12. doi: 10.12073/j.hjxb.20200520001
Cheng Lifu, Wei Guoqian, Hu Ke, et al. Based simulation of short crack behavior at weld toe[J]. Transactions of the China Welding Institution, 2020, 41(12): 7 − 12. doi: 10.12073/j.hjxb.20200520001
|
[3] |
邓彩艳, 刘庚, 龚宝明, 等. 基于Tanaka-Mura位错模型的疲劳裂纹萌生寿命预测[J]. 焊接学报, 2021, 42(1): 30 − 37. doi: 10.12073/j.hjxb.20200706003
Deng Caiyan, Liu Geng, Gong Baoming, et al. Fatigue crack initiation life prediction based on Tanaka-Mura dislocation model[J]. Transactions of the China Welding Institution, 2021, 42(1): 30 − 37. doi: 10.12073/j.hjxb.20200706003
|
[4] |
Zhang P, Zhang L, Baxevanakis K P, et al. Modelling short crack propagation in a single crystal nickel based superalloy using crystal plasticity and XFEM[J]. International Journal of Fatigue, 2020, 136: 105594. doi: 10.1016/j.ijfatigue.2020.105594
|
[5] |
Mlikota M, Schmauder S. Modelling of overload effects on fatigue crack initiation in case of carbon steel[J]. Fatigue & Fracture of Engineering Materials & Structures, 2017, 40(8): 1182 − 1190.
|
[6] |
张凭, 陆山, 景鑫, 等. 基于晶体塑性的涡轮盘短裂纹扩展模拟方法[J]. 航空动力学报, 2022, 37(4): 684 − 693. doi: 10.13224/j.cnki.jasp.20210230
Zhang Ping, Lu Shan, Jing Xin, et al. Simulation method of short crack propagation in turbine disks based on crystal plasticity[J]. Journal of Aerospace Power, 2022, 37(4): 684 − 693. doi: 10.13224/j.cnki.jasp.20210230
|
[7] |
孙朋飞, 姚丹丹, 张鹏林, 等. 金属焊接接头疲劳寿命延长技术综述[J]. 材料导报, 2021, 35(9): 9059 − 9068. doi: 10.11896/cldb.19100173
Sun Pengfei, Yao Dandan, Zhang Penglin, et al. Fatigue life extension technologies for weld joints of metals: a review[J]. Materials Reports, 2021, 35(9): 9059 − 9068. doi: 10.11896/cldb.19100173
|
[8] |
Manonukul A, DunneF P E. High- and low-cycle fatigue crack initiation using polycrystal plasticity[J]. Proceedings:Mathematical, Physical and Engineering Sciences, 2004, 460(2047): 1881 − 1903. doi: 10.1098/rspa.2003.1258
|
[9] |
Mcdowell D L. Simulation-based strategies for microstructure-sensitive fatigue modeling[J]. Materials Science and Engineering:A, 2007, 468-470(15): 4 − 14.
|
[10] |
Peirce D, Asaro R J , Needleman A, An analysis of nonuniform and localized deformation in ductile single crystals[J]. Acta Metallurgica, 1982, 30(6): 1087-1119.
|
[11] |
Wei Guoqian, Hu Ke, Chen Siwen, et al. Experiment and simulation investigation of multiple cracks evolution at the weld toe[J]. International Journal of Fatigue, 2021, 144: 106037. doi: 10.1016/j.ijfatigue.2020.106037
|
[12] |
Huang Y G. A user-material subroutine incorporating single crystal plasticity in the ABAQUS finite element program[D]. Maassachuse, Harvard University . 1991.
|
[13] |
Zhang Chi, Zhang Liwen, Shen Wenfei, et al. 3D crystal plasticity finite element modeling of the tensile deformation of polycrystalline ferritic stainless steel[J]. Acta Metallurgica Sinica-(English Letters), 2017, 30(1): 79 − 88. doi: 10.1007/s40195-016-0488-9
|
[14] |
Su Molin, Xu Lianyong, Peng Chentao, et al. Fatigue short crack growth, model and EBSD characterization of marine steel welding joint[J]. International Journal of Fatigue, 156 (2022): 106689.
|
[15] |
Mikulski Z, Lassen T. Fatigue crack initiation and subsequent crack growth in fillet welded steel joints[J]. International Journal of Fatigue, 2019, 120: 303 − 318. doi: 10.1016/j.ijfatigue.2018.11.014
|
[1] | ZHAO Qiu, TANG Kun, LI Yinghao, WU Weiqing. Fatigue crack initiation simulation of weld toe based on the Roe-Siegmund cyclic cohesive zone model[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(3): 61-67. DOI: 10.12073/j.hjxb.20230317003 |
[2] | CHENG Lifu, WEI Guoqian, HU Ke, JIANG Yongsheng. FIP based simulation of short crack behavior at weld toe[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(12): 7-12. DOI: 10.12073/j.hjxb.20200520001 |
[3] | WEI Guoqian, CHEN Siwen, YU Xi, CHENG Lifu. Experimental and simulation study on multiple cracks of weld toe[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(11): 75-81. DOI: 10.12073/j.hjxb.2019400291 |
[4] | YU Xi, WEI Guoqian, LI Shanshan, YE Fan, CHEN Siwen. Numerical simulation analysis of crack propagation in weld toe considering multiple cracks[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(7): 88-93. DOI: 10.12073/j.hjxb.2019400187 |
[5] | YU Xi, WEI Guoqian, LI Shanshan, CHEN Siwen. Numerical simulation analysis of crack propagation in weld toe considering aspect ratio[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(5): 107-112,125. DOI: 10.12073/j.hjxb.2019400136 |
[6] | CAO Jiong, ZHOU Jianping, XU Yan, YIN Yiliang, XU Yihao. Study on feedback of power source in short-electric arc machining[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(1): 67-70. |
[7] | ZHANG Chun-bo, SUN Guang, HE Jian-ping, WU Yi-xiong. Parameter's influence of constraining transient state short current on short circuiting transfer[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (4): 101-104. |
[8] | ZHANG Zhong-ping, HUO Li-xing, WANG Dong-po, ZHANG Yu-feng. Effect of sprayed coatings on stress intensity factor of weld toe crack of cruciform welded joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (2): 85-88. |
[9] | JING Hong-yang, XU Lian-yong, HUO Li-xing, ZHANG Yu-feng. Investigation on ductile crack propagation for welded joints considering micro-plastic damage[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2003, (6): 4-6,10. |
[10] | Tian Xitang, Zhu Hongguan, Xu Shipeng, Gao Yingbo, Xie Guolu. PROPAGATION OF WELD TOE CRACKS UNDER FATIGUE LOAD[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1981, (3): 85-95. |