Advanced Search
ZHANG Zhong-ping, HUO Li-xing, WANG Dong-po, ZHANG Yu-feng. Effect of sprayed coatings on stress intensity factor of weld toe crack of cruciform welded joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (2): 85-88.
Citation: ZHANG Zhong-ping, HUO Li-xing, WANG Dong-po, ZHANG Yu-feng. Effect of sprayed coatings on stress intensity factor of weld toe crack of cruciform welded joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (2): 85-88.

Effect of sprayed coatings on stress intensity factor of weld toe crack of cruciform welded joints

More Information
  • Received Date: June 19, 2005
  • Both two-dimensional and three-dimensional models were founded according to non-loaded cruciform welded joints.The stress intensity factors of weld toe cracks were calculated by using finite element analysis software ANSYS.The effects of elastic modulus of the sprayed coating and crack size on stress intensity factor was analyzed.The calculated results show that plasma sprayed coating is effective to decrease the stress intensity factor of weld toe.The stress intensity factor of a certain crack decreased while the elastic modulus of the sprayed coating increased.When Ec/Ep=0.6,the stress intensity factor of two-dimensional model decreases by 62.5%,and that of three-dimensional model decreases by 42.6%.
  • Related Articles

    [1]LIANG Hui, LI Pan, SHEN Xin, CHEN Lifan, DAI Junhui, LI Dong, YANG Dongqing. Finite element analysis of the effect of ultrasonic impact on the stress of aluminum alloy arc additive manufacturing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(10): 79-85, 119. DOI: 10.12073/j.hjxb.20230304003
    [2]WANG Shang, TIAN Yanhong, HAN Chun, LIU YangZhi. Effect of temperature distribution of CBGA components on fatigue life of solder joint by FEA[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(11): 113-118.
    [3]LIU Lu, WANG Ping, LIU Yong, MA Ran. Research on residual distortion of welded tubular structure based on FEA[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(10): 113-116.
    [4]MI Gaoyang, WEI Yanhong, ZHAN Xiaohong, GU Cheng. A study of automatically transitional meshing approach for finite element method during butt welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(5): 44-46,88.
    [5]WANG Hongfeng, WANG Jianli, ZUO Dunwen, SONG Weiwei, DUAN Xinglin. Finite element analysis on friction stir welding of aviation aluminum alloy plate[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(5): 21-25.
    [6]CHEN Yongxiong, LIANG Xiubing, SHANG Junchao, XU Binshi. Analysis of FEA of residual stress for thermal sprayed coating on shaft parts[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (6): 13-16.
    [7]YANG Iinjuan, SHEN Shiming. Finite element analysis of residual stress of welding repair for gas pipeline[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (12): 77-80.
    [8]GAO Jiashuang, YANG Jianguo, FANG Hongyuan, SHI Wenyong, SHANG Haibo. FEA preprocessing system of welding analysis based on VRML[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (4): 93-96.
    [9]ZHANG Mingxian, WU Chuansong, LI Kehai, ZHANG Yuming. FEA based prediction of weld dimension in new DE-GMAW process[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (2): 33-37.
    [10]ZHU Liang, CHEN Jian-hang. Characteristics of stress distribution and prediction of strength inheat-affected zone softened welded joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2004, (3): 48-51.

Catalog

    Article views (208) PDF downloads (68) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return