Citation: | CHENG Lifu, WEI Guoqian, HU Ke, JIANG Yongsheng. FIP based simulation of short crack behavior at weld toe[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(12): 7-12. DOI: 10.12073/j.hjxb.20200520001 |
张彦华. 焊接力学与结构完整性原理[M]. 北京: 北京航空航天大学出版社, 2007.
Zhang Yanhua. Principles of welding mechanics and structural integrity[M]. Beijing: Beijing University of Aeronautics and Astronautics Press, 2007.
|
Zerbst U, Madia M, Vormwald M, et al. Fatigue strength and fracture mechanics-A general perspective[J]. Engineering Fracture Mechanics, 2017, 198: 2 − 23.
|
魏国前, 岳旭东, 党章, 等. 结合S-N曲线和断裂力学的焊接结构疲劳寿命分析[J]. 焊接学报, 2017, 38(2): 23 − 27.
Wei Guoqian, Yue Xudong, Dang Zhang, et al. S-N and IEFM combined fatigue life analysis for welded structures[J]. Transactions of the China Welding Institution, 2017, 38(2): 23 − 27.
|
Zerbst U, Ainsworth R A, Beier H T, et al. Review on fracture and crack propagation in weldments-a fracture mechanics perspective[J]. Engineering Fracture Mechanics, 2014, 132(2): 200 − 276.
|
Miller K J. The behavior of short fatigue cracks and their initiation Part I-A review of two recent books[J]. Fatigue Fract Eng Mater Struct, 1987, 10: 75 − 91. doi: 10.1111/j.1460-2695.1987.tb01150.x
|
Xijia Wu. On Tanaka-Mura’s fatigue crack nucleation model and validation[J]. Fatigue Fracture Engineering Material Structure, 2018, 41: 894 − 899. doi: 10.1111/ffe.12736
|
牟园伟, 陆山. 基于材料微观特性的涡轮盘疲劳裂纹萌生寿命数值仿真[J]. 航空学报, 2013, 34(2): 282 − 290.
Mu Yuanwei, Lu Shan. Numerical simulation of fatigue-crack-initiation life for turbine disk based on material microcosmic characteristics[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(2): 282 − 290.(in Chinese)
|
Mcdowell D L, Dunne F P E. Microstructure-sensitive computational modeling of fatigue crack formation[J]. International Journal of Fatigue, 2010, 32: 1521 − 1542. doi: 10.1016/j.ijfatigue.2010.01.003
|
Castelluccio G M, Mcdowell D L. Mesoscale modeling of microstructurally small fatigue cracks in metallic polycrystals[J]. Materials Science & Engineering A, 2014, 598: 34 − 55. doi: 10.1016/j.msea.2014.01.015
|
Fatemi A, Socie D F. Critical plane approach to multiaxial fatigue damage including out-of-phase loading[J]. Fatigue Fract Eng Mater Struct, 1988, 11: 149 − 65. doi: 10.1111/j.1460-2695.1988.tb01169.x
|
Stephens R I, Fatemi A, Stephens R R, et al. Metal fatigue in engineering[M]. 2nd ed. New York: John Wiley & Sons, 2001.
|
魏国前, 陈斯雯, 余茜, 等. 焊趾多裂纹的试验与仿真分析[J]. 焊接学报, 2019, 40(11): 75 − 81. doi: 10.12073/j.hjxb.2019400291
Wei Guoqian, Cheng Siwen, Yu Xi, et al. Test and simulation analysis of multiple cracks in the weld toe[J]. Transactions of the China Welding Institution, 2019, 40(11): 75 − 81. doi: 10.12073/j.hjxb.2019400291
|
[1] | ZHAO Qiu, TANG Kun, LI Yinghao, WU Weiqing. Fatigue crack initiation simulation of weld toe based on the Roe-Siegmund cyclic cohesive zone model[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(3): 61-67. DOI: 10.12073/j.hjxb.20230317003 |
[2] | ZHONG Guangsheng, WEI Guoqian, YAN Mengyu, FENG Zibin. Study on the influence of weld toe radius on the evolution behavior of fatigue short cracks[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(11): 88-95. DOI: 10.12073/j.hjxb.20221212004 |
[3] | JIAO Guangchen, ZHAN Yong, WEN Jianfeng. Simulation of fatigue crack growth behavior in welded plates considering different material properties of weld and base metals[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(11): 52-58. DOI: 10.12073/j.hjxb.20221221001 |
[4] | ZHAO Yangyang, LIN Kexin, WANG Ying, GONG Baoming. Fatigue crack initiation behavior of additive manufacturing components based on dislocation model[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(7): 1-8. DOI: 10.12073/j.hjxb.20220825001 |
[5] | WEI Guoqian, CHEN Siwen, YU Xi, CHENG Lifu. Experimental and simulation study on multiple cracks of weld toe[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(11): 75-81. DOI: 10.12073/j.hjxb.2019400291 |
[6] | GUO Wei, ZHAO Lei, XU Lianyong, HAN Yongdian. The analysis of multiple surface cracks growth behavior under the interaction of creep cracks[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(8): 44-49. DOI: 10.12073/j.hjxb.2019400207 |
[7] | YU Xi, WEI Guoqian, LI Shanshan, YE Fan, CHEN Siwen. Numerical simulation analysis of crack propagation in weld toe considering multiple cracks[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(7): 88-93. DOI: 10.12073/j.hjxb.2019400187 |
[8] | YU Xi, WEI Guoqian, LI Shanshan, CHEN Siwen. Numerical simulation analysis of crack propagation in weld toe considering aspect ratio[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(5): 107-112,125. DOI: 10.12073/j.hjxb.2019400136 |
[9] | LIU Ren-pei, DONG Zu-jue, PAN Yong-ming. Dynamic cracking behaviors of weld solidification cracks for aluminum alloys at elevated temperature[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (10): 9-13. |
[10] | ZHANG Hai-quan, ZHANG Yan-hua, LI Liu-he, MA Xiang-sheng. Influence of Mechanical Mis-match on Fatigue Crack Growth Behavior of Electron Beam Welded Joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2000, (3): 40-43. |