Advanced Search
LIU Chen, WEI Shitong, WU Dong, LU Shanping. Corrosion behavior of 9Cr heat-resistant steel deposited metal with different Si contents in lead-bismuth[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(8): 98-103. DOI: 10.12073/j.hjxb.20221129002
Citation: LIU Chen, WEI Shitong, WU Dong, LU Shanping. Corrosion behavior of 9Cr heat-resistant steel deposited metal with different Si contents in lead-bismuth[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(8): 98-103. DOI: 10.12073/j.hjxb.20221129002

Corrosion behavior of 9Cr heat-resistant steel deposited metal with different Si contents in lead-bismuth

More Information
  • Received Date: November 28, 2022
  • Available Online: July 14, 2023
  • In order to investigate the effect of Si content on the corrosion behavior of 9Cr ferritic-martensitic heat-resistant steel deposited metal in liquid lead-bismuth alloy, corrosion experiments were performed on 9Cr ferritic-martensitic steel deposited metal with different Si contents in saturated oxygen and controlled oxygen (oxygen concentration: 1 ×10−6 ~ 5 × 10−6 wt.%) static lead-bismuth at 550 ℃, respectively. The results show that the double-layered oxide scale forms on the surface of deposited metal in saturated oxygen lead-bismuth at 550 ℃, and the discontinuous passivation layer and the double-layered oxide scale with uneven thickness form on deposited metal in oxygen-controlled lead-bismuth at 550 ℃. The passivation layer will fail in some areas during the corrosion process through penetration mechanism and film breakdown mechanism, where oxidation aggravates to form the double-layered oxide scale. With the increase of Si content in the deposited metal, the thickness of the oxide layer in the saturated oxygen lead-bismuth decreases, the continuity of the passivation layer in the controlled oxygen lead-bismuth increases, and the corrosion resistance of the deposited metal in the lead-bismuth increases.
  • GIF. Technology roadmap update for generation IV nuclear energy systems [R]. OECD Nuclear Energy Agency for the Generation IV International Forum, 2014.
    Lorusso P, Bassini S, Del Nevo A, et al. GEN-IV LFR development: Status & perspectives[J]. Progress in Nuclear Energy, 2018, 105: 318 − 31. doi: 10.1016/j.pnucene.2018.02.005
    Yvon P, Carré F. Structural materials challenges for advanced reactor systems[J]. Journal of Nuclear Materials, 2009, 385(2): 217 − 222. doi: 10.1016/j.jnucmat.2008.11.026
    Zinkle S J, Was G S. Materials challenges in nuclear energy[J]. Acta Materialia, 2013, 61(3): 735 − 758. doi: 10.1016/j.actamat.2012.11.004
    Fazio C, Balbaud F. 2 - Corrosion phenomena induced by liquid metals in Generation IV reactors [M]. Structural Materials for Generation IV Nuclear Reactors. Woodhead Publishing, 2017.
    Kohyama A, Hishinuma A, Gelles D S, et al. Low-activation ferritic and martensitic steels for fusion application[J]. Journal of Nuclear Materials, 1996, 233-237: 138 − 147. doi: 10.1016/S0022-3115(96)00327-3
    Zhang J, Li N. Review of the studies on fundamental issues in LBE corrosion[J]. Journal of Nuclear Materials, 2008, 373(1): 351 − 377.
    Del Giacco M, Weisenburger A, Mueller G. Fretting corrosion in liquid lead of structural steels for lead-cooled nuclear systems: Preliminary study of the influence of temperature and time[J]. Journal of Nuclear Materials, 2012, 423(1): 79 − 86.
    Giuranno D, Novakovic R, Tomasi C, et al. Evaluation of corrosion phenomena of T91 steel in stagnant liquid lead at high operational temperatures[J]. Corrosion, 2020, 76(11): 1 − 11.
    Gorynin I V, Karzov G P, Markov V G, et al. Structural materials for atomic reactors with liquid metal heat-transfer agents in the form of lead or lead-bismuth alloy[J]. Metal Science and Heat Treatment, 1999, 41(9-10): 384 − 388.
    Kurata Y. Corrosion behavior of Si-enriched steels for nuclear applications in liquid lead–bismuth[J]. Journal of Nuclear Materials, 2013, 437(1): 401 − 408.
    Kondo M, Takahashi M. Corrosion resistance of Si- and Al-rich steels in flowing lead–bismuth[J]. Journal of Nuclear Materials, 2006, 356(1): 203 − 212.
    Shi Q, Liu J, Luan H, et al. Oxidation behavior of ferritic/martensitic steels in stagnant liquid LBE saturated by oxygen at 600 ℃[J]. Journal of Nuclear Materials, 2015, 457: 135 − 141. doi: 10.1016/j.jnucmat.2014.11.018
    Chen G, Lei Y, Zhu Q, et al. Corrosion behavior of CLAM steel weld bead in flowing Pb-Bi at 550 ℃[J]. Journal of Nuclear Materials, 2019, 515: 187 − 198. doi: 10.1016/j.jnucmat.2018.12.038
    Mustari A P A, Takahashi M. Study on corrosion properties of welded ferritic-martensitic steels in liquid lead-bismuth at 600 ℃[J]. Journal of Power and Energy Systems, 2011, 5(1): 69 − 76. doi: 10.1299/jpes.5.69
    雷玉成, 陈钢, 朱强, 等. CLAM钢焊缝在550 ℃流动的铅铋合金中的腐蚀行为[J]. 焊接学报, 2019, 40(4): 1 − 7. doi: 10.12073/j.hjxb.2019400091

    Lei Yucheng, Chen Gang, Zhu Qiang, et al. Corrosion behavior of CLAM steel weld bead in flowing Pb-Bi alloy at 550 ℃[J]. Transactions of the China Welding Institution, 2019, 40(4): 1 − 7. doi: 10.12073/j.hjxb.2019400091
    Xu Z, Song L, Zhao Y, et al. The formation mechanism and effect of amorphous SiO2 on the corrosion behaviour of Fe-Cr-Si ODS alloy in LBE at 550 ℃[J/OL]. Corrosion Science, 2021, 190: 109634.
    Wang J, Lu S, Rong L, et al. Effect of silicon on the oxidation resistance of 9wt.% Cr heat resistance steels in 550 ℃ lead-bismuth eutectic[J]. Corrosion Science, 2016, 111: 13 − 25. doi: 10.1016/j.corsci.2016.04.020
    Short M P, Ballinger R G. A functionally graded composite for service in high-temperature lead- and lead-bismuth-cooled nuclear reactors—I: Design[J]. Nuclear Technology, 2017, 177: 366 − 381.
    Soltis J. Passivity breakdown, pit initiation and propagation of pits in metallic materials - Review[J]. Corrosion Science, 2015, 90: 5 − 22. doi: 10.1016/j.corsci.2014.10.006
    Yamaki E, Ginestar K, Martinelli L. Dissolution mechanism of 316L in lead-bismuth eutectic at 500 °C[J]. Corrosion Science, 2011, 53: 3075 − 3085. doi: 10.1016/j.corsci.2011.05.031
  • Related Articles

    [1]WU Jiawei, LI Haoyue, XIA Hongbo, JIAO Junke. Interface microstructure and fracture behavior of aluminum/titanium laser welding-brazing under different Si element contents[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2025, 46(2): 136-144. DOI: 10.12073/j.hjxb.20240829002
    [2]WANG Jun, LI Fang, ZHANG Yuelong, HUA Xueming, SHEN Chen. Effect of Si content in welding wire on crack sensitivity of aluminum alloy joints and its mechanism[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(1): 55-60. DOI: 10.12073/j.hjxb.20190827001
    [3]LEI Yucheng, CHEN Gang, ZHU Qiang, JU Na. Corrosion behavior of CLAM steel weld bead in flowing Pb-Bi alloy at 550 °C[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(4): 1-7. DOI: 10.12073/j.hjxb.2019400091
    [4]HAO Lixin, JIA Ruiling, ZHANG Huixia, ZHAI Xiwei, CHEN Furong. Influence of micro-arc oxidation film on corrosion of inhomogeneity of 7A52 aluminum alloy friction stir welding joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(3): 145-150. DOI: 10.12073/j.hjxb.2019400088
    [5]LUO Meng, LEI Yucheng, CHEN Gang, XIAO Longren. Effect of flow rate on corrosion behavior of 316L stainless steel welding seam in liquid lead bismuth eutectic[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(3): 65-70. DOI: 10.12073/j.hjxb.2019400073
    [6]LIU Wei, XIONG Huaping, TANG Siyi. Effect of Si content on microstructural evolution of Nb-Si binary alloys fabricated by laser rapid forming[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(3): 53-56,61.
    [7]LI Jungang, LÜ Ying, LI Muqin, WANG Hongwei, ZHU Zhaojun, WEI Zunjie, MENG Xiangcai. Discharge during microarc oxidation process on Mg-7Li alloy and its corrosion resistance[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (7): 25-28.
    [8]LIU Wanhui, LIU Wenbin, BAO Ailian. Improvement of corrosion resistance of friction stir welded joint of 7N01-T5 aluminum alloy by micro-arc oxidation[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (1): 29-32.
    [9]WANG Zhiping, SUN Yubo, DING Kunying, LIU Jia, CAI Xun. Structure and electrochemistry corrosion behaviors of microarc oxidation on aluminum[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (12): 74-76.
    [10]LI Zhi-yong, LI Jun-yue, LI Huan, WANG Bao. Special electrode with high temperature corrosive resistance[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2003, (6): 81-84.
  • Cited by

    Periodical cited type(1)

    1. 王志鹏,朱明亮,轩福贞. CrMoV与NiCrMoV异种钢焊接接头的高周疲劳性能及寿命模型. 焊接学报. 2024(07): 67-73 . 本站查看

    Other cited types(0)

Catalog

    Article views (156) PDF downloads (53) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return