Citation: | LU Yiting, LU Wei, WANG Bin, MA Xuyi, CHEN Wei. Effect of laser wobble on energy distribution and weld forming of Ti60 alloy laser welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(6): 95-102. DOI: 10.12073/j.hjxb.20220728001 |
郭举乐, 田永武. 600 ℃高温钛合金的研究进展[J]. 铸造技术, 2020, 41(9): 894 − 896.
Guo Jule, Tian Yongwu. Research and development of 600 ℃ high temperature titanium alloys[J]. Foundry Technology, 2020, 41(9): 894 − 896.
|
李毅, 赵永庆, 曾卫东, 等. 航空钛合金的应用及发展趋势[J]. 材料导报, 2020, 34(Z1): 280 − 282.
Li Yi, Zhao Yongqing, Zeng Weidong, et al. Application and development of aerial titanium alloys[J]. Materials Reports, 2020, 34(Z1): 280 − 282.
|
芦伟, 马旭颐, 段爱琴, 等. BTi6431S钛合金光纤激光焊接成形及稳定性分析[J]. 激光与光电子学进展, 2020, 57(13): 220 − 225.
Lu Wei, Ma Xuyi, Duan Aiqin, et al. Weld formation and stability analysis of fiber laser beam welded BTi6431S titanium alloy[J]. Laser and Optoelectronics Progress, 2020, 57(13): 220 − 225.
|
Li J, Liu Y, Zhen Z, et al. Analysis and improvement of laser wire filling welding process stability with beam wobble[J]. Optics & Laser Technology, 2021, 134: 106594.
|
Hao K, Geng L, Ming G, et al. Weld formation mechanism of fiber laser oscillating welding of austenitic stainless steel[J]. Journal of Materials Processing Technology, 2015, 225: 77 − 83. doi: 10.1016/j.jmatprotec.2015.05.021
|
Hugger F, Hofmann K, Kohl S, et al. Spatter formation in laser beam welding using laser beam oscillation[J]. Welding in the World, 2015, 59(2): 165 − 172. doi: 10.1007/s40194-014-0189-9
|
包刚, 彭云, 陈武柱, 等. 超细晶粒钢光束摆动激光焊接的研究[J]. 应用激光, 2002, 22(2): 203 − 205. doi: 10.3969/j.issn.1000-372X.2002.02.032
Bao Gang, Peng Yun, Chen Wuzhu, et al. Study on laser welding of ultra-fine grained steel with weaving beam[J]. Applied Laser, 2002, 22(2): 203 − 205. doi: 10.3969/j.issn.1000-372X.2002.02.032
|
Li S, Mi G, Wang C, et al. A study on laser beam oscillating welding characteristics for the 5083 aluminum alloy: Morphology, microstructure and mechanical properties[J]. Journal of Manufacturing Processes, 2020, 53: 12 − 20. doi: 10.1016/j.jmapro.2020.01.018
|
李军兆, 孙清洁, 张清华, 等. 空间多位置摆动激光填丝焊接熔池动态行为及焊缝成形[J]. 焊接学报, 2021, 42(10): 35 − 39,61.
Li Junzhao, Sun Qingjie, Zhang Qinghua, et al. Research on molten pool dynamic behavior and weld formation of transverse oscillating laser welding process for various positions in space[J]. Transactions of the China Welding Institution, 2021, 42(10): 35 − 39,61.
|
芦伟, 马旭颐, 巩玥, 等. 光束摆动对铝合金激光搭接焊缝成形及组织的影响[J]. 应用激光, 2022, 42(1): 9 − 14. doi: 10.14128/j.cnki.al.20224201.009
Lu Wei, Ma Xuyi, Gong Yue, et al. Effect of laser wobble on the weld formation and microstructure of aluminum alloy lap joint[J]. Applied Laser, 2022, 42(1): 9 − 14. doi: 10.14128/j.cnki.al.20224201.009
|
陈根余, 王彬, 钟沛新, 等. 2060铝锂合金扫描填丝焊接工艺[J]. 焊接学报, 2020, 41(4): 44 − 50. doi: 10.12073/j.hjxb.20191016002
Chen Genyu, Wang Bin, Zhong Peixin, et al. Laser scanning welding of 2060 Al-Li alloy with filler wire[J]. Transactions of the China Welding Institution, 2020, 41(4): 44 − 50. doi: 10.12073/j.hjxb.20191016002
|
雷正龙, 毕思源, 张新瑞, 等. 2195铝锂合金T型接头双侧激光摆动焊接组织与性能分析[J]. 中国激光, 2022, 49(8): 30 − 39.
Lei Zhenglong, Bi Siyuan, Zhang Xinrui, et al. Microstructure and mechanical properties of double-sided laser swing welding of 2195 Al-Li alloy T-joints[J]. Chinese Journal of Lasers, 2022, 49(8): 30 − 39.
|
Wang Z, Oliveira J P, Zeng Z, et al. Laser beam oscillating welding of 5A06 aluminum alloys: Microstructure, porosity and mechanical properties[J]. Optics & Laser Technology, 2018, 111: 58 − 65.
|
Fetzer F, Sommer M, Weber R, et al. Reduction of pores by means of laser beam oscillation during remote welding of AlMgSi[J]. Optics and Lasers in Engineering, 2018, 108: 68 − 77. doi: 10.1016/j.optlaseng.2018.04.012
|
Wang L, Gao M, Zhang C, et al. Effect of beam oscillating pattern on weld characterization of laser welding of AA6061-T6 aluminum alloy[J]. Materials and Design, 2016, 108: 707 − 717. doi: 10.1016/j.matdes.2016.07.053
|
Thiel C, Hess A, Weber R, et al. Stabilization of laser welding processes by means of beam oscillation[C]//Laser Sources and Applications. SPIE, 2012, 8433: 225-234.
|
李坤, 王威, 单际国, 等. TC4 钛合金光纤激光摆动焊抑制小孔型气孔的原因分析[J]. 焊接学报, 2016, 37(11): 43 − 46.
Li Kun, Wang Wei, Shan Jiguo, et al. Analysis of keyhole-type pore suppressing in fiber laser welded TC4 titanium alloy with beam weaving[J]. Transactions of the China Welding Institution, 2016, 37(11): 43 − 46.
|
Long J, Zhang L J, Zhuang M X, et al. Narrow-gap laser welding with beam wobbling and filler wire and microstructural performance of joints of thick TC4 titanium alloy plates[J]. Optics and Laser Technology, 2022, 152: 108089. doi: 10.1016/j.optlastec.2022.108089
|
Squillace A, Prisco U, Ciliberto S, et al. Effect of welding parameters on morphology and mechanical properties of Ti-6Al-4V laser beam welded butt joints[J]. Journal of Materials Processing Technology, 2012, 212(2): 427 − 436. doi: 10.1016/j.jmatprotec.2011.10.005
|
Mahrle A, Beyer E. Modeling and simulation of the energy deposition in laser beam welding with oscillatory beam deflection[C]//International Congress on Applications of Lasers and Electro-Optics. Laser Institute of America, 2007.
|
Li J Z, Sun Q J, Kang K Q, et al. Process stability and parameters optimization of narrow-gap laser vertical welding with hot wire for thick stainless steel in nuclear power plant[J]. Optics and Laser Technology, 2020, 123: 105921. doi: 10.1016/j.optlastec.2019.105921
|
[1] | SUN Jiahao, ZHANG Chaoyong, WU Jianzhao, ZHANG Shuaikun, ZHU Lei. Prediction of weld profile of 316L stainless steel based on generalized regression neural network[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(12): 40-47. DOI: 10.12073/j.hjxb.20210526003 |
[2] | LI Xiangwei, FANG Ji, ZHAO Shangchao. Master S-N curve fitting method of welded structure and software development[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(1): 80-85. DOI: 10.12073/j.hjxb.20191018001 |
[3] | ZOU Yuanyuan, ZUO Kezhu, FANG Lingshen, LI Pengfei. Recognition of weld seam for tailored blank laser welding based on least square support vector machine[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(2): 77-81. DOI: 10.12073/j.hjxb.2019400046 |
[4] | XUE Jiaxiang, JIANG Chengfeng, ZHANG Xiaoli, ZHU Xiaojun, ZHU Qiang. Research on unified adjustment of pulsed MIG welding parameters based on least squares method[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(8): 75-78. |
[5] | LIN Naichang, YANG Xiaoxiang, LIN Wen-jian, ZHU Zhibin. Defect detection of TOFD D scanning image based on parabola Htting[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(6): 105-108. |
[6] | ZHU Xiaopeng, ZHANG Ke, TU Zhiqiang, HUANG Jie. Calibration of relative position and orientation between robot and positioner based on spheres fitting method[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (1): 41-44. |
[7] | QIN Tao, ZHANG Ke, DENG Jingyu, JIN Xin. Algorithm of extracting feature lines in welding seam image based on improved least-square method[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (2): 33-36. |
[8] | ZHANG Ke, WU Yixiong, LV Xueqin, JIN Xin. Real-time identification of heading angle based on least squares estimator for welding mobile robot[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (6): 13-16. |
[9] | LI Ruihua, MENG Guoxiang, GONG Liang, ZHANG Ke. Partial least square approach for multi-parameter assessment of resistance spot welding quality[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (3): 49-52. |
[10] | CAI Yan, YANG Hai-lan, XU Xin, WU Yi-xiong. Spatter model of CO2 arc welding based on partial least-square regression method[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2004, (5): 125-128. |