Citation: | CAI Jiasi, WANG Wen, GAO Jianxin, JIN Hongxi, WEI Yanhong. Effect of oscillating laser welding parameters on energy distribution and joint forming of 5A06 thick plate aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2025, 46(1): 48-58. DOI: 10.12073/j.hjxb.20231105001 |
Clockwise circular oscillation (CW) laser welding experiments are carried out on 8.0 mm thick 5A06 aluminum alloy. Considering the beam oscillating trajectory and energy superposition effect, the energy distribution model of the workpiece surface is established. The effects of beam oscillation frequency and oscillation amplitude on joints’ forming and energy distribution are studied, and the influence mechanism of the interaction between the linear and circular motions of the beam on the energy distribution is revealed. The results show that compared with conventional laser welding, the action range of the oscillating welding beam becomes larger and the melting width increases significantly, which provides greater gap adaptability for butt welding. The surface energy of the workpiece changes from a single peak to a double peak, showing a “high on both sides and low in the middle” distribution, and the energy peak is 1/5 of that of conventional laser welding. When the oscillating frequency is 200 ~ 300 Hz and the oscillating amplitude is 1.5 ~ 2.5 mm, the laser energy distribution is relatively uniform, the undercut and spatter defects are almost eliminated, and the weld is well formed. When the oscillating amplitude increases from 1 mm to 3 mm, the energy superposition effect is weakened, the energy inhomogeneity is enhanced, and the energy peak is reduced. When the oscillating frequency increases from 100 Hz to 200 Hz, the uniformity and symmetry of energy distribution will get improved. When the oscillating frequency increases from 200 Hz to 300 Hz, the local superposition effect will be enhanced and the energy asymmetry will increase.
[1] |
Yan H Z, Zeng X G, Cui Y H, et al. Numerical and experimental study of residual stress in multi-pass laser welded 5A06 alloy ultra-thick plate[J]. Journal of Materials Research and Technology, 2024, 28: 4116 − 4130. doi: 10.1016/j.jmrt.2023.12.277
|
[2] |
Xu Y Q, Liu Q, Xu J Y, et al. Review on multi-information acquisition, defect prediction and quality control of aluminum alloy GTAW process[J]. Journal of Manufacturing Processes, 2023, 108: 624 − 638. doi: 10.1016/j.jmapro.2023.11.025
|
[3] |
Ai Y W, Yan Y C, Yu L, et al. The analysis of energy distribution characteristics of molten pool in welding of aluminum alloy with oscillating laser[J]. Sustainability, 2023, 15(8): 6868.
|
[4] |
Li T Q, Wan Y J, Bi Z W, et al. Weld formation and porosity in TC4 joint by oscillating laser beam welding with circle trajectory model[J]. Journal of Materials Research and Technology, 2024, 30: 2680 − 2689. doi: 10.1016/j.jmrt.2024.04.026
|
[5] |
Chen B, Meng Z, Yan S H, et al. Effects of oscillating molten pool flow on the weld formation and mechanical performance of titanium alloy joints[J]. Optics & Laser Technology, 2024, 177: 111156.
|
[6] |
解雪云, 宋晓杰, 刘明磊, 等. 摆动模式对7005-T6铝合金激光焊接头力学性能及腐蚀行为的影响[J]. 中国有色金属学报, 2024, 34(7): 2200 − 2214. doi: 10.11817/j.ysxb.1004.0609.2023-44637
Xie Xueyun, Song Xiaojie, Liu Minglei, et al. Effect of oscillating mode on mechanical properties and corrosion behavior of 7005-T6 aluminum alloy laser welded joint[J]. The Chinese Journal of Nonferrous Metals, 2024, 34(7): 2200 − 2214. doi: 10.11817/j.ysxb.1004.0609.2023-44637
|
[7] |
毕思源, 张新瑞, 雷正龙, 等. 光束摆动方式对2195铝锂合金T型接头双侧激光焊接裂纹的影响[J]. 机械工程学报, 2023, 59(22): 245 − 253. doi: 10.3901/JME.2023.22.245
Bi Siyuan, Zhang Xinrui, Lei Zhenglong, et al. Influence of beam swing mode on cracks of double-sided laser welding of 2195 aluminum-lithium alloy T-joint[J]. Journal of Mechanical Engineering, 2023, 59(22): 245 − 253. doi: 10.3901/JME.2023.22.245
|
[8] |
白明. 压铸AlSi7MnMg铝合金激光振荡焊接接头微观组织与性能研究[D]. 长春: 吉林大学, 2023.
Bai Ming. Research on microstructure and properties of die casting AlSi7MnMg alloy oscillating laser welded joint[D]. Changchun: Jilin University, 2023.
|
[9] |
Zhang B X, Chen H, Liu Y, et al. Study on the influence of Al-Si welding wire on porosity sensitivity in laser welding and process optimization[J]. Optics & Laser Technology, 2024, 170: 110261.
|
[10] |
夏佩云, 封小松, 王春明, 等. 激光摆动焊接工艺参数对不锈钢焊缝成形与气孔率的影响[J]. 焊接学报, 2023, 44(4): 39 − 44. doi: 10.12073/j.hjxb.20220511003
Xia Peiyun, Feng Xiaosong, Wang Chunming, et al. Effect of parameters on weld formation and porosity of stainless steel in laser oscillating welding[J]. Transactions of the China Welding Institution, 2023, 44(4): 39 − 44. doi: 10.12073/j.hjxb.20220511003
|
[11] |
Liu M, Shao C D, Zheng Z G, et al. The effect of laser oscillation welding on porosity suppression for medium-thick Al alloy with high Mg content[J]. Optics & Laser Technology, 2024, 175: 110795.
|
[12] |
Ai Y W, Yan Y C, Han S B. Numerical analysis of the effect of energy distribution on weld width during oscillating laser welding of aluminum alloy[J]. Journal of Laser Applications, 2023, 35(4): 042014. doi: 10.2351/7.0001131
|
[13] |
李会明. 摆动激光-Sn箔耦合对镁/钢焊接接头组织和性能的影响[D]. 长沙: 湖南大学, 2023.
Liu Huiming. Effect of oscillating laser-Sn foil coupling on microstructure and properties of magnesium/steel welded joint[D]. Changsha: Hunan University, 2023.
|
[14] |
肖珺, 葛欣雨, 盖胜男, 等. 基于摆动激光扫描的GMAW焊缝成形调控[J]. 焊接学报, 2024, 45(4): 7 − 12. doi: 10.12073/j.hjxb.20230423001
Xiao Jun, Ge Xinyu, Gai Shengnan, et al. Regulation of bead formation in GMAW based on oscillating-laser scanning[J]. Transactions of the China Welding Institution, 2024, 45(4): 7 − 12. doi: 10.12073/j.hjxb.20230423001
|
[15] |
Zhao H, Debroy T. Weld metal composition change during conduction mode laser welding of aluminum alloy 5182[J]. Metallurgical and Materials Transactions B, 2001, 32: 163 − 172. doi: 10.1007/s11663-001-0018-6
|
[16] |
Liu Y H, Li Y, Zhou X Y, et al. Determination of beam oscillating pattern for tailoring melt flow and microstructural characteristics of laser welded Ti–6Al–4V alloy[J]. International Journal of Thermal Sciences, 2024, 203: 109156. doi: 10.1016/j.ijthermalsci.2024.109156
|
[17] |
Wu M P, Luo Z, Li Y, et al. Effect of oscillation modes on weld formation and pores of laser welding in the horizontal position[J]. Optics & Laser Technology, 2023, 158: 108801.
|
[18] |
吴贯之, 陈楠楠, 石华兵, 等. 摆动激光填丝焊工艺参数对碳钢搭接角焊缝成形与力学性能的影响[J/OL]. 机械工程学报, 1 − 9[2024-11-29]. http://kns.cnki.net/kcms/detail/11.2187.TH.20240925.1129.040.html.
Wu Guanzhi, Chen Nannan, Shi Huabing, et al. Influence of welding parameters on formation and mechanical properties of lap fillet welded carbon steel joints in oscillation laser welding with filler wire[J/OL]. Journal of Mechanical Engineering, 1 − 9[2024-11-26]. http://kns.cnki.net/kcms/detail/11.2187.TH.20240925.1129.040.html.
|
[19] |
Liu T T, Mu Z Y, Hu R Z, et al. Sinusoidal oscillating laser welding of 7075 aluminum alloy: hydrodynamics, porosity formation and optimization[J]. International Journal of Heat and Mass Transfer, 2019, 140: 346 − 358. doi: 10.1016/j.ijheatmasstransfer.2019.05.111
|