Citation: | XING Jie1, HAN Yongdian1,2, XU Lianyong1,2, JING Hongyang2, LI Congcheng1, Zhao Lei2. High cycle and low cycle hybrid fatigue damage based on continuum damage mechanics[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(7): 63-66. DOI: 10.12073/j.hjxb.20150708001 |
Kamal K,Mitao O,Ranjith D,etal.New combined high and low-cycle fatigue model to estimate life of steel bridges considering interaction of high and low amplitudes loading[J].Advances in Structural Engineering,2012,15(2): 287-288.[2] 李 睿,鲍 蕊,费斌军.2024-T3铝合金孔板高低周合疲劳试验研究[J].飞机设计,2010,30(3): 18-19.Li Rui,Bao Rui,Fei Binjun.Experimental study on high cycle fatigue of 2024-T3 aluminum alloy plate[J].Aircraft Design,2010,30(3): 18-19.[3] 邬华芝,郭海丁,高 德.焊接接头低周疲劳损伤分形演化模型[J].焊接学报,2003,24(1): 88-90.Wu Huazhi,Guo Haiding,Gao De.Fractal model for low cycle fatigue damage of welded joints[J].Transactions of the China Welding Institution,2003,24(1): 88-90.[4] Lanning D,Haritos G K,Nicholas T,etal.Low-cycle fatigue/high-cycle fatigue interactions in notched Ti-6Al-4V[J].Journal of Fatigue and Fracture of Engineering Materials and Structures,2001,24: 565-578.[5] Zhang L,Liu X S,Wang L S,etal.A model of continuum damage mechanics for high cycle fatigue of metallic materials[J].Transaction of Nonferrous Metals Social of China ,2012,22: 2777-2781.[6] Lemaitre J.How to use damage mechanics[J].Nuclear Engineering and Design,1984,80(2): 233-245.[7] Yang X H,Li N,Jin Z H,etal.A continuous low cycle fatigue damage model and its application in engineering materials[J].International Journal Fatigue,1997,1900: 687-692.[8] 周胜田.航空发动机叶片疲劳损伤力学研究及外物损伤影响[D].沈阳: 东北大学,2007.[9] 李聪成,荆洪阳,徐连勇,等.蠕变疲劳交互作用下裂纹萌生的有限元模拟[J].焊接学报,2016,37(8): 5-8.Li Chongcheng,Jing Hongyang,Xu Lianyong,etal.Finite element simulation of crack initiation under creep-fatigue interaction[J].Transactions of the China Welding Institution,2016,37(8): 5-8.[10] 林有智,傅高升,李 雷,等.TC4钛合金焊接结构连续非线性疲劳损伤[J].焊接学报,2013,34(8): 92-95.Lin Youzhi,Fu Gaosheng,Li Lei,etal.Continuous nonlinear fatigue damage of TC4 titanium alloy welded structure[J].Transactions of the China Welding Institution,2013,34(8): 92-95.
|
[1] | WANG Shang, TIAN Yanhong, HAN Chun, LIU YangZhi. Effect of temperature distribution of CBGA components on fatigue life of solder joint by FEA[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(11): 113-118. |
[2] | JIA Cuiling, CHEN Furong. FE simulation of effect of material mechanical parameters on welding stress and strain treated by ultrasonic impact[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(10): 105-108. |
[3] | LI Congcheng, JING Hongyang, XU Lianyong, HAN Yongdian, ZHANG Wen. Numerical simulation of crack initiation under creep-fatigue interaction in P92 steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(8): 5-8. |
[4] | WANG Yanfei, GENG Luyang, GONG Jianming, JIANG Wenchun. Finite element simulation on residual stress and deformation for welding joint of 20MnMoNb super-thick tube sheet of ethylene oxide reactor[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (11): 63-66. |
[5] | LI Chaowen, WANG Yong, LI Liying, HAN Tao. Three-dimensional dynamic FEM simulation of temperature distribution of T-joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (8): 33-36. |
[6] | JI Feng, XUE Songbai, ZHANG Liang, WANG Hui. Finite element analysis on soldered joint reliability of QFN device[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (10): 57-60. |
[7] | ZHANG Lixia, FENG Jicai. Finite element simulation of thermal stress on brazed K24 nickel-based joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (9): 29-32. |
[8] | HU Guiming, ZHOU Changyu, ZHANG Guodong, CHEN Cheng, LEI Na. Finite element simulation on the effect of welding residual stress on the metal dusting corrosion of welded joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (1): 42-46. |
[9] | FENG Ji-cai, ZHANG Li-xia. Finite element simulation of thermal stress on the brazed TiC cermet/iron joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (12): 9-12. |
[10] | ZHANG Hong-wu, ZHANG Zhao, CHEN Jin-tao. Finite element analysis of friction stir welding process[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (9): 13-18. |
1. |
徐连勇,龙志平,赵雷,韩永典,彭晨涛. EH36钢焊接接头焊趾处应力集中对高低周复合疲劳的影响. 焊接学报. 2024(07): 1-9 .
![]() | |
2. |
高树灵,李宁,岳亚男,张芮. 基于超声扩散场的焊接节点疲劳损伤早期检测及剩余寿命评估. 土木工程学报. 2024(09): 22-33+45 .
![]() | |
3. |
刘朋帅,王晓玮,侯军. 考虑耦合损伤的高低周复合疲劳寿命预测模型. 机械强度. 2024(05): 1175-1183 .
![]() | |
4. |
程斌亮,殷志明,黄小光,王一超. 管道高周腐蚀疲劳损伤模型与数值模拟研究. 西安石油大学学报(自然科学版). 2023(01): 127-134+144 .
![]() | |
5. |
李洪松,刘永葆,贺星,殷望添. 考虑耦合损伤的燃气轮机叶片材料高低周复合疲劳寿命研究. 推进技术. 2022(02): 7-13 .
![]() | |
6. |
黄小光,王志强,张典豪,程斌亮,叶贵根. 一种低周疲劳损伤演化模型及裂纹成核缺口敏感性分析. 船舶力学. 2022(03): 391-399 .
![]() | |
7. |
杨庆鹤,王瑞杰,赵红阳,武陇岗,覃秋雷. 含隧道缺陷铝合金FSW搭接接头疲劳寿命预测. 机械科学与技术. 2022(04): 573-579 .
![]() | |
8. |
崔璐,康文泉,吴鹏,刘阳,李臻,窦益华. 高低周复合疲劳工况下汽轮机转子钢寿命模型. 科学技术与工程. 2021(09): 3612-3617 .
![]() | |
9. |
由于,张伟,燕群,徐健,王春生,李忠义,孙贺. 基于高低周复合疲劳试验技术的叶片失效故障复现. 推进技术. 2020(05): 1130-1137 .
![]() | |
10. |
宋松,韩永典,徐连勇,荆洪阳,赵雷. 基于混合硬化模型的Ti-6Al-4V低周疲劳损伤分析. 焊接学报. 2019(01): 43-48+163 .
![]() | |
11. |
石欣桐,肖迎春,黄博. 两级复合载荷下铝合金疲劳寿命预估. 科学技术与工程. 2018(17): 320-323 .
![]() |