Advanced Search
XING Jie1, HAN Yongdian1,2, XU Lianyong1,2, JING Hongyang2, LI Congcheng1, Zhao Lei2. High cycle and low cycle hybrid fatigue damage based on continuum damage mechanics[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(7): 63-66. DOI: 10.12073/j.hjxb.20150708001
Citation: XING Jie1, HAN Yongdian1,2, XU Lianyong1,2, JING Hongyang2, LI Congcheng1, Zhao Lei2. High cycle and low cycle hybrid fatigue damage based on continuum damage mechanics[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(7): 63-66. DOI: 10.12073/j.hjxb.20150708001

High cycle and low cycle hybrid fatigue damage based on continuum damage mechanics

More Information
  • Received Date: July 07, 2015
  • Based on the continuum damage mechanics (CMD) and irreversible thermodynamics framework, a damage evolution model was investigated under high cycle and low cycle fatigue, respectively, and a new damage model was developed for high cycle and low cycle hybrid fatigue. A user defined material subroutine (UMAT) was compiled and coupled to ABAQUS finite element analysis software. The simulation of high-low cycle fatigue damage and the prediction of crack initiation position and life of notched materials were carried out. Simultaneously, the influence of different high cycle and low cycle ratios on the crack initiation life was studied. The results reveal that the crack was easy to initiate at the stress concentration spot of the notched root. As the interaction of high cycle and low cycle damage was taken into account, the simulated results were more in accord with the practical situation. Meanwhile, the high cycle ratio would accelerate the crack initiation.
  • Kamal K,Mitao O,Ranjith D,etal.New combined high and low-cycle fatigue model to estimate life of steel bridges considering interaction of high and low amplitudes loading[J].Advances in Structural Engineering,2012,15(2): 287-288.[2] 李 睿,鲍 蕊,费斌军.2024-T3铝合金孔板高低周合疲劳试验研究[J].飞机设计,2010,30(3): 18-19.Li Rui,Bao Rui,Fei Binjun.Experimental study on high cycle fatigue of 2024-T3 aluminum alloy plate[J].Aircraft Design,2010,30(3): 18-19.[3] 邬华芝,郭海丁,高 德.焊接接头低周疲劳损伤分形演化模型[J].焊接学报,2003,24(1): 88-90.Wu Huazhi,Guo Haiding,Gao De.Fractal model for low cycle fatigue damage of welded joints[J].Transactions of the China Welding Institution,2003,24(1): 88-90.[4] Lanning D,Haritos G K,Nicholas T,etal.Low-cycle fatigue/high-cycle fatigue interactions in notched Ti-6Al-4V[J].Journal of Fatigue and Fracture of Engineering Materials and Structures,2001,24: 565-578.[5] Zhang L,Liu X S,Wang L S,etal.A model of continuum damage mechanics for high cycle fatigue of metallic materials[J].Transaction of Nonferrous Metals Social of China ,2012,22: 2777-2781.[6] Lemaitre J.How to use damage mechanics[J].Nuclear Engineering and Design,1984,80(2): 233-245.[7] Yang X H,Li N,Jin Z H,etal.A continuous low cycle fatigue damage model and its application in engineering materials[J].International Journal Fatigue,1997,1900: 687-692.[8] 周胜田.航空发动机叶片疲劳损伤力学研究及外物损伤影响[D].沈阳: 东北大学,2007.[9] 李聪成,荆洪阳,徐连勇,等.蠕变疲劳交互作用下裂纹萌生的有限元模拟[J].焊接学报,2016,37(8): 5-8.Li Chongcheng,Jing Hongyang,Xu Lianyong,etal.Finite element simulation of crack initiation under creep-fatigue interaction[J].Transactions of the China Welding Institution,2016,37(8): 5-8.[10] 林有智,傅高升,李 雷,等.TC4钛合金焊接结构连续非线性疲劳损伤[J].焊接学报,2013,34(8): 92-95.Lin Youzhi,Fu Gaosheng,Li Lei,etal.Continuous nonlinear fatigue damage of TC4 titanium alloy welded structure[J].Transactions of the China Welding Institution,2013,34(8): 92-95.
  • Related Articles

    [1]AN Tongbang, ZHENG Qing, ZHANG Yonglin, LIANG Liang, ZHU Yanjie, PENG Yun. SH-CCT diagram and cold cracking sensitivity of a 1300 MPa grade high strength low alloy steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(9): 75-81. DOI: 10.12073/j.hjxb.20220402002
    [2]ZHANG Hua, GUO Qilong, ZHAO Changyu, LIN Sanbao, SHI Gongqi. Influence of two-step aging on structure and stress corrosion sensitivity of friction stir welded 7050-T7451 aluminum alloys[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(6): 1-5. DOI: 10.12073/j.hjxb.20190513001
    [3]YAN Chunyan, YUAN Yuan, ZHANG Kezhao, WU Lichao, WANG Baosen. Investigation on cold cracking susceptibility of X100 pipeline steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(12): 41-46. DOI: 10.12073/j.hjxb.2019400310
    [4]RUAN Ye, SU Jinlong, QIAO Jianyi, QIU Xiaoming, XING Fei. Effect of humidity on crack sensitivity of aluminum alloy weld joint and its mechanism[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(1): 89-93. DOI: 10.12073/j.hjxb.2019400018
    [5]YAO Qianyu, DENG Caiyan, GONG Baoming, WANG Dongpo. The sensitivity analysis of parameters involved in engineering critical assessment for the submarine pipeline[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(3): 41-44.
    [6]ZHANG Jingqiang, YANG Jianguo, XUE Gang, WANG Jiajie, FANG Hongyuan. Hydrogen induced cracking sensibility of welded joint based on tensile test with hydrogen pre-charging[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(5): 89-92.
    [7]ZHANG Qunbing, NIU Jing, ZHAO Pengfei, HUANG Yong, LI Zhigang, ZHANG Jianxun. Influence of preheating temperature on cold cracking sensitivity of 12Cr10Co3W2Mo heat resistant steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(4): 87-91.
    [8]ZHANG Yuanjie, PENG Yun, MA Chengyong, PENG Xinna, TIAN Zhiling, LU Jiansheng. Harden quenching tendency and cold cracking susceptibility of Q890 steel during welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (6): 53-56.
    [9]LAN Liangyun, QIU Chunlin, ZHAO Dewen, GAO Xiuhua. Toughness of welding heat affected zone in high strength steel with low welding crack susceptibility[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (1): 41-44.
    [10]DU Yi, ZHANG Tian-hong, ZHANG Jun-xu. Analysis on welding cold crack sensibility of 10Ni8CrMoV steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (12): 93-96.
  • Cited by

    Periodical cited type(10)

    1. 刘许亮. 基于改进粒子滤波的焊缝磁光成像增强. 电子器件. 2023(01): 96-102 .
    2. 税法典,陈世强. 基于机器视觉的数据线焊接缺陷检测. 无损检测. 2023(08): 67-72 .
    3. 刘倩雯,叶广文,马女杰,高向东. 焊接微缺陷磁光成像检测有限元分析. 精密成形工程. 2022(03): 94-101 .
    4. 代欣欣,高向东,郑俏俏,季玉坤. 焊缝缺陷磁光成像模糊聚类识别方法. 焊接学报. 2021(01): 54-57+101 . 本站查看
    5. 王付军,刘兰英. 基于微焦点X射线的SMT焊点缺陷检测仿真. 计算机仿真. 2020(09): 428-431 .
    6. 甄任贺,熊建斌,周卫. 基于磁荷理论的微间隙焊缝磁光成像规律研究. 电焊机. 2019(07): 84-88 .
    7. 陈廷艳,梁宝英,罗瑜清. 基于神经网络的焊缝宽度预测方法研究. 机电信息. 2019(30): 88-89+91 .
    8. 王春草,高向东,李彦峰,张南峰. 磁光成像无损检测方法的研究现状与展望. 制造技术与机床. 2019(11): 31-37 .
    9. 王春草,高向东,李彦峰,张南峰. 磁光成像无损检测方法的研究现状与展望. 制造技术与机床. 2019(11): 31-37 .
    10. 张佳莹,丛森,刚铁,林尚扬. 基于频率–相位编码信号激励的焊缝超声检测分析. 焊接学报. 2018(07): 7-11+41+129 . 本站查看

    Other cited types(7)

Catalog

    Article views (424) PDF downloads (145) Cited by(17)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return