Advanced Search
FU Lei, SHAN Long, WEN Yushuang, WANG Ping, FANG Hongyuan. Characterization of hydrogen gas pressure inner hydrogen induced crack cavity using fracture mechanics theory and finite element method[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(11): 8-12. DOI: 10.12073/j.hjxb.2019400280
Citation: FU Lei, SHAN Long, WEN Yushuang, WANG Ping, FANG Hongyuan. Characterization of hydrogen gas pressure inner hydrogen induced crack cavity using fracture mechanics theory and finite element method[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(11): 8-12. DOI: 10.12073/j.hjxb.2019400280

Characterization of hydrogen gas pressure inner hydrogen induced crack cavity using fracture mechanics theory and finite element method

More Information
  • Received Date: January 12, 2019
  • In order to characterize the effect of hydrogen pressure on crack propagation accurately, the characterization method was analyzed using the fracture mechanics theory, then several finite element (FE) methods were used for calculating the hydrogen pressure effect. According to the loading direction of hydrogen pressure, the mode I crack was chosen as an example. Based on the fracture mechanics reasoning, the theoretical formulas for characterizing hydrogen pressure using stress intensity factors (SIF) under the linear elastic model and the elastoplastic model were obtained. The results of FE calculation showed the J integral method is not suitable for the characterization of hydrogen pressure effect on the crack growth. However, SIF had the considerable rationality and accuracy for characterization. In addition, the displacement method is more suitable than the stress method for calculating the SIF of hydrogen pressure.
  • Sezgin J G, Bosch C, Montouchet A, et al. Modelling of hydrogen induced pressurization of internal cavities[J]. International Journal of Hydrogen Energy, 2017, 42(22):15403-15414.
    Fischer F D, Svoboda J. Formation of bubbles by hydrogen attack and elastic-plastic deformation of the matrix[J]. International Journal of Plasticity, 2014, 63:110-123.
    Venezuela J, Blanch J, Zulkiply A, et al. Further study of the hydrogen embrittlement of martensitic advanced high-strength steel in simulated auto service conditions[J]. Corrosion Science, 2018, 135:120-135.
    Sobol O, Nolze G, Romeo S N, et al. Novel approach to image hydrogen distribution and related phase transformation in duplex stainless steels at the sub-micron scale[J]. International Journal of Hydrogen Energy, 2017, 42(39):25114-25120.
    Zhu Y X, Li Z H, Huang M S. Solute hydrogen effects on plastic deformation mechanisms of α-Fe with twist grain boundary[J]. International Journal of Hydrogen Energy, 2018, 43(22):10481-10495.
    Jemblie L, Bjaaland H, Nyhus B, et al. Fracture toughness and hydrogen embrittlement susceptibility on the interface of clad steel pipes with and without a Ni-interlayer[J]. Materials Science and Engineering:A, 2017, 685:87-94.
    Eliaz N, Banks-Sills L, Ashkenazi D, et al. Modeling failure of metallic glasses due to hydrogen embrittlement in the absence of external loads[J]. Acta Materialia, 2004, 52(1):93-105.
    Marchi C S, Somerday B P, Robinson S L. Permeability, solubility and diffusivity of hydrogen isotopes in stainless steels in gas pressures[J]. International Journal of Hydrogen Energy, 2007, 32(1):100-116.
    郭昀静. 高强度马氏体钢的氢致开裂特征研究[D]. 昆明:昆明理工大学, 2012.
    程靳, 赵树山. 断裂力学[M]. 北京:科学出版社, 2006.
  • Related Articles

    [1]CHEN Changrong, ZHOU Sunsheng, HE Hua, LIAN Guofu, HUANG Xu, FENG Meiyan. Planning and layout of V-groove welding beads based on parabolic model[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(7): 79-88. DOI: 10.12073/j.hjxb.20220820003
    [2]CHEN Zhuofan, WANG Qingxia, WANG Ming, ZHAO Huihui, YIN Yuhuan. Finite element analysis on wear of stirring tool considering temperature effect[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(1): 109-112. DOI: 10.12073/j.hjxb.2019400022
    [3]TIAN Peng, CHEN Zhen. Application of 3D shell element in welding thermal elastic-plastic finite element analysis[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(9): 99-102,112.
    [4]WANG Hongfeng, WANG Jianli, ZUO Dunwen, SONG Weiwei, DUAN Xinglin. Finite element analysis on friction stir welding of aviation aluminum alloy plate[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(5): 21-25.
    [5]ZHAO Sheng, CHEN Zhen, LUO Yu. Application of high order elements in welding thermal elastic-plastic finite element analysis[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(1): 54-58.
    [6]CHEN Yongxiong, LIANG Xiubing, SHANG Junchao, XU Binshi. Analysis of FEA of residual stress for thermal sprayed coating on shaft parts[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (6): 13-16.
    [7]WANG Huai-gang, WU Chuan-song, ZHANG Ming-xian. Finite element method analysis of temperature field in keyhole plasma arc welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (7): 49-53.
    [8]LIU Min, CHEN Shi-xuan, CHEN Yong, KANG Ji-dong. Finite element for analysing EBW residual stress in titanium alloy plates[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2004, (6): 62-65.
    [9]XU Yang, XIA Cheng-yu, TIAN Wei, ZHANG Bing-yi. Effect of elastoplastic deformation on stainless steel welding components in low-temperature aging[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2004, (4): 126-128.
    [10]ZHANG Zhong-dian, LI Dong-qing, YIN Xiao-hui. Study on Spot Welding Quality Monitoring Models by Linear Regression Theory[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2001, (4): 31-35.
  • Cited by

    Periodical cited type(8)

    1. 李运刚,任喜强,齐艳飞,吴志杰,冯汉坤,李彦泽. 铜合金化轻质钢屈服强度及氢脆性能的研究进展. 钢铁. 2024(03): 19-31 .
    2. 程旺军,崔栋栋,孙耀宁,曾月. 基于液氢储运的超低温不锈钢微观组织演变与力学性能研究进展. 太阳能学报. 2024(06): 117-124 .
    3. 刘昕,于翔麟,盖旭辉,张全厚,黎生明. 06Cr19Ni11Ti不锈钢焊接缺陷分析及改善. 阀门. 2024(06): 706-708 .
    4. 秦志辉,张晓斌,胡卫朋,岑树海,孙小兵,解洋. 在役石脑油加氢反应器裂纹失效分析及维修. 化工机械. 2023(03): 407-412 .
    5. 王宇辰,吴倩,刘欢,康泽天. 管线钢氢相容性测试方法及氢脆防控研究进展. 油气储运. 2023(11): 1251-1260 .
    6. 许未晴,鲁仰辉,孙晨,贾冠伟,李梦雅,雷鸣宇,蔡茂林,吴素君. 天然气掺氢输送系统氢脆研究进展. 油气储运. 2022(10): 1130-1140 .
    7. 周海婷,叶东东,朱晨曦,胡沁. 材料氢脆涡流评价的有限元仿真研究. 电子测量技术. 2022(21): 156-160 .
    8. 杨静,王晓霖,李遵照,董经发,冯灿. 氢气长距离管输技术现状与探讨. 压力容器. 2021(02): 80-86 .

    Other cited types(2)

Catalog

    Article views (538) PDF downloads (11) Cited by(10)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return