Advanced Search
ZHU Changshun, MAO Jizhou, WANG Hongyu, HUANG Jinlei, ZHU Jian. Memory properties of Fe-xMn-6Si-9Cr-5Ni alloy by laser additive manufacturing with powder cored wire[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(7): 102-108. DOI: 10.12073/j.hjxb.20220819003
Citation: ZHU Changshun, MAO Jizhou, WANG Hongyu, HUANG Jinlei, ZHU Jian. Memory properties of Fe-xMn-6Si-9Cr-5Ni alloy by laser additive manufacturing with powder cored wire[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(7): 102-108. DOI: 10.12073/j.hjxb.20220819003

Memory properties of Fe-xMn-6Si-9Cr-5Ni alloy by laser additive manufacturing with powder cored wire

More Information
  • Received Date: August 18, 2022
  • Available Online: August 02, 2023
  • In order to improve the performance of iron-based memory alloys and control the burning loss of elements during additive manufacturing, Fe-xMn-6Si-9Cr-5Ni (x = 14, 17 ,20) alloy with varying contents of Mn was prepared by laser directed energy deposition with powder cored wire. The shape recovery rate and microstructure of the alloy under different pre-deformation amounts were studied, and the memory performance optimization mechanism of the alloy was explored. The results showed that during powder cored wire laser additive manufacturing of Fe-xMn-6Si-9Cr-5Ni alloy, the burning rate of elements was only 25.6%, and low temperature martensites capable of improving the memory performance of the alloy were generted in the deposited alloy. When the mass fraction of Mn accounted for 17%, the shape recovery rate of the alloy reached 75% (with recoverable deformation at 3%) and 63% (with recoverable deformation at 3.78%) at a pre-deformation of 4% and 6%, respectively.
  • Guenin G. Shape memory and pseudoelastic properties of Fe-Mn-Si and Ti-Ni based alloys[J]. Le Journal De Physique IV, 1997, 7(5): 467 − 476.
    Sato A, Chishima E, Soma K, et al. Shape memory effect in γ transformation in Fe-30Mn-1Si alloy single crystals[J]. Acta Metallurgica, 1982, 30(6): 1177 − 1183. doi: 10.1016/0001-6160(82)90011-6
    卢棋, 何国球, 陈淑娟, 等. 热机械训练过程中Fe-Mn-Si系形状记忆合金的组织演变[J]. 材料工程, 2015, 43(4): 8 − 12. doi: 10.11868/j.issn.1001-4381.2015.04.002

    Lu Qi, He Guoqiu, Chen Shujuan, et al. Microstructure evolution of Fe-Mn-Si shape memory alloy during thermal mechanical training process[J]. Journal of Materials Engineering, 2015, 43(4): 8 − 12. doi: 10.11868/j.issn.1001-4381.2015.04.002
    姚聪, 李瑞迪, 袁铁锤, 等. 激光送粉增材制造Fe-Mn-Si基形状记忆合金组织与性能[J]. 中南大学学报(自然科学版), 2020, 51(11): 3081 − 3087.

    Yao Cong, Li Ruidi, Yuan Tiecui, et al. Microstructure and properties of Fe-Mn-Si based shape memory alloy by powder feeding laser additive manufacturing[J]. Journal of Central South University(Science and Technology), 2020, 51(11): 3081 − 3087.
    奥妮, 何子昂, 吴圣川, 等. 激光增材制造AlSi10Mg合金的力学性能研究进展[J]. 焊接学报, 2022, 43(9): 1 − 19.

    Ao Ni, He Ziang, Wu Shengchuan, et al. Recent progress on the mechanical properties of laser additive manufacturing AlSi10Mg alloy[J]. Transactions of the China Welding Institution, 2022, 43(9): 1 − 19.
    Lee A Y, Jia A, Chua C K. Two-way 4D printing: A review on the reversibility of 3D-printed shape memory materials[J]. Engineering, 2017, 3(5): 663 − 674.
    陈国庆, 树西, 张秉刚, 等. 国内外电子束熔丝沉积增材制造技术发展现状[J]. 焊接学报, 2018, 39(8): 123 − 128.

    Chen Guoqing, Shu Xi, Zhang Binggang, et al. State-of-arts of electron beam freeform fabrication technology[J]. Transactions of the China Welding Institution, 2018, 39(8): 123 − 128.
    Kim D, Ferretto I, Leinenbach C, et al. 3D and 4D printing of complex structures of Fe-Mn-Si-based shape memory alloy using laser powder bed fusion[J]. Advanced Materials Interfaces, 2022, 9(13): 1 − 11.
    Ju H, Lin C X, Liu Z J, et al. Study of in-situ formation of Fe-Mn-Si shape memory alloy welding seam by laser welding with filler powder[J]. Optics & Laser Technology, 2018, 104: 65 − 72.
    朱建, 王宏宇, 史东辉, 等. 增材制造记忆合金的元素烧损行为及其补损分析[J]. 焊接学报, 2022, 43(9): 50 − 55.

    Zhu Jian, Wang Hongyu, Shi Donghui, et al. Element loss behavior and compensation of additive manufacturing memory alloy[J]. Transactions of the China Welding Institution, 2022, 43(9): 50 − 55.
    赵磊. 基于微纳粉芯丝材的Fe-Mn-Si-Cr-Ni记忆合金增材制造工艺、组织和性能研究[D]. 镇江: 江苏大学, 2021.

    Zhao Lei. Research on additive manufacturing process, microstructure and properties of Fe-Mn-Si-Cr-Ni memory alloy with micro-nano powder core wire[D]. Zhenjiang: Jiangsu University, 2021.
    王宏宇, 黄金雷, 陈胜, 等. 基于Cu-Al-Fe合金的粉芯丝材增材制造理论及其温度场分析[J]. 焊接学报, 2023, 44(4): 111 − 119.

    Wang Hongyu, Huang Jinlei, Chen Sheng, et al. Analysis of the theory and temperature field of additive manufacturing with powder core wire based on Cu-Al-Fe alloy[J]. Transactions of the China Welding Institution, 2023, 44(4): 111 − 119.
    Wang H Y. Functional low-loss shape memory alloy micro-nano powder core wire material for laser additive manufacturing: WO, 2019223083[P]. 2019-11-28.
    Li J C, Zhang Z, Jiang Q. Properties and application of Fe-6Si-14Mn-9Cr-5Ni shape memory alloy[J]. Materials Science and Technology:MST:A publication of the Institute of Metals, 2001, 17(3): 292 − 295.
    孙广平. 铁锰硅铬镍形状记忆合金的组织性能及其制造管接头工艺性的研究[D]. 长春: 吉林大学, 2000.

    Sun Guangping. Study on microstructure and properties of Fe-Mn-Si-Cr-Ni shape memory alloy and its manufacturability of pipe joint[D]. Changchun: Jilin University, 2000.
    Ju H, Lin C X, Zhang J Q, et al. Research on residual stress inside Fe-Mn-Si shape memory alloy coating by laser cladding pr-ocessing[J]. Optoelectronics Letters, 2016, 12(5): 344 − 348. doi: 10.1007/s11801-016-6131-1
    Zhang Q, Xu P, Zha G Q, et al. Numerical simulations of temperature and stress field of Fe-Mn-Si-Cr-Ni shape memory alloy coating synthesized by laser cladding[J]. Optik, 2021, 242: 167079. doi: 10.1016/j.ijleo.2021.167079
    Xu P, Ju H, Lin C X, et al. In-situ synthesis of Fe-Mn-Si-Cr-Ni shape memory alloy functional coating by laser cladding[J]. Chinese Optics Letters, 2014, 12(4): 48 − 50.
    Ferrett I, Kim D, Della Ventura N M, et al. Laser powder bed fusion of a Fe-Mn-Si shape memory alloy[J]. Additive Manufacturing, 2021, 46: 102071. doi: 10.1016/j.addma.2021.102071
    Tian J Y, Xu P, Chen J H, et al. Microstructure and phase transformation behaviour of a Fe/Mn/Si/Cr/Ni alloy coating by laser cladding[J]. Optics and Lasers in Engineering, 2019, 122(9): 97 − 104.
    Peng H B, Wen Y H, Du Y Y. Effect of manganese on microstructures and solidification modes of cast Fe-Mn-Si-Cr-Ni shape memory alloys[J]. Metallurgical and Materials Transactions B, 2013, 44(5): 1137 − 1143. doi: 10.1007/s11663-013-9880-2
    Wu X C, Hsu T Y, Xu Z Y. Effect of the Neel temperature, TN, on martensitic transformation in Fe-Mn-Si-based shape memory alloys[J]. Materials Characterization, 2000, 45(2): 137 − 142.
    Li J C, Zhao M. Alloy design of Fe-Mn-Si-Cr-Ni shape memor-y alloys related to stacking-fault energy[J]. Metallurgical and Mat-erials Transactions A, 2000, 31(3): 581 − 584.
    Zhao C. Relationships between martensite transformation temperatures and compositions in Fe-Mn-Si-based shape memory alloys[J]. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Application, 2000, 214(3): 173 − 176. doi: 10.1243/0954405001517568
    Verbeken K, Van Caenegem N, Verhaege M. Quantification of the amount of martensite in a Fe-Mn-Si-Cr-Ni shape memory alloy by means of electron backscatter diffraction[J]. Materials Science & Engineering: A, 2008, 481: 471 − 475.
    Koyama M, Sawaguchi T, Tsuzaki K. Si content dependence on shape memory and tensile properties in Fe-Mn-Si-C alloys[J]. Materials Science & Engineering: A, 2011, 528(6): 2882 − 2888.
  • Related Articles

    [1]ZHAO Yufeng, SONG Laidong, WANG Hongyu, JIANG Yinfang, HU Zhanming. Influence of WC addition on the wear resistance mechanism of laser additively manufactured Fe-Mn-Si-Cr-Ni alloys[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION. DOI: 10.12073/j.hjxb.20240721001
    [2]ZHOU Yaju, YIN Shengming, XIA Yongzhong, YI Guoqiang, XUE Lihong, YAN Youwei. Effect of heat treatment on the microstructure and mechanical properties of wire arc additively manufactured ferrite/martensitic steel for nuclear applications[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(10): 18-26. DOI: 10.12073/j.hjxb.20221011001
    [3]WANG Hongyu, HUANG Jinlei, CHEN Sheng, ZHU Jian, MAO Jizhou. Analysis of the theory and temperature field of additive manufacturing with powder core wire based on Cu-Al-Fe alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(4): 111-119. DOI: 10.12073/j.hjxb.20220519002
    [4]ZHU Jian, WANG Hongyu, SHI Donghui, HUANG Jinlei, MAO Jizhou. Element loss behavior and compensation of additive manufacturing memory alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(9): 50-55. DOI: 10.12073/j.hjxb.20220105001
    [5]XU Bo, WANG Ying, ZHANG Meng, YANG Zhenwen, WANG Dongpo. Effect of Nb alloying on wire arc additive manufacturing NiTi-based shape memory alloys[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(8): 1-7. DOI: 10.12073/j.hjxb.20210317003
    [6]ZHANG Wei, AO Sansan, ZENG Zhi, LUO Zhen, ZUO Xinde. Ultrasonic welding of NiTi shape memory alloy with Cu interlayer[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(2): 64-67. DOI: 10.12073/j.hjxb.2019400043
    [7]CHEN Yuhua, KE Liming, HUANG Yongde, XU Shilong. Laser butt welding of TiNi shape memory alloy sheet[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (8): 37-40.
    [8]ZHANG Chunhua, ZHANG Zhuo, ZHANG Song, HAN Zhong, MAN Hauchung. Fretting wear behavior of laser surface melted NiTi shape memory alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (7): 22-24,28.
    [9]XU Yue-lan, CHENG Zhi-fu, FAN Xiao-long, CHU Cheng-lin, WANG Shi-dong. Plasma beam welding of shape memory alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (12): 89-92.
    [10]XUE Song-bai, LÜ Xiao-chun, ZHANG Hui-wen. Resistance brazing technology of TiNi shape memory alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2004, (1): 1-4.
  • Cited by

    Periodical cited type(1)

    1. 孙全喜,王伟,石智成,宋亚辉,李海豹,梁家煜,尹飞. 基于焊接角变形的辅具优化设计. 机械制造文摘(焊接分册). 2023(05): 42-45+48 .

    Other cited types(0)

Catalog

    Article views (147) PDF downloads (28) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return