Citation: | XU Bo, WANG Ying, ZHANG Meng, YANG Zhenwen, WANG Dongpo. Effect of Nb alloying on wire arc additive manufacturing NiTi-based shape memory alloys[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(8): 1-7. DOI: 10.12073/j.hjxb.20210317003 |
徐祖耀. 形状记忆材料[M]. 上海: 上海交通大学出版社, 2000.
Xu Zuyao. Shape memory materials[M]. Shanghai: Shanghai Jiao Tong University Press, 2000.
|
Madangopal K. The self accommodating martensitic microstructure of Ni-Tishape memory alloys[J]. Acta materialia, 1997, 45(12): 5347 − 5365. doi: 10.1016/S1359-6454(97)00161-4
|
郑玉峰. 工程用镍钛合金[M]. 北京: 科学出版社, 2014.
Zheng Yufeng. Nickel titanium alloy for engineering use[M]. Beijing: Science Press, 2014.
|
胡茜. 成分梯度TiNi合金的马氏体相变行为与阻尼特性[D]. 哈尔滨: 哈尔滨工程大学材料学院, 2013.
Hu Xi. Martensitic transformation behavior and damping characteristics of TiNi alloy with gradient composition[D]. Harbin: School of Materials Engineering, Harbin Engineering University, 2013.
|
刘康凯, 贺志荣, 吴佩泽, 等. Ti-Ni基形状记忆合金的特性及其影响因素研究进展[J]. 铸造技术, 2017, 38(7): 1535 − 1539.
Liu Kangkai, He Zhirong, Wu Peize, et al. Research progress of characteristics of Ti-Ni based shape memory alloys and their influencing factors[J]. Foundry Technology, 2017, 38(7): 1535 − 1539.
|
欧阳小平. 航空管接头综述[J]. 中国机械工程, 2015, 16: 2262 − 2271. doi: 10.3969/j.issn.1004-132X.2015.16.023
Ouyang Xiaoping. Overview of aviation hydraulic fittings[J]. China Mechanical Engineering, 2015, 16: 2262 − 2271. doi: 10.3969/j.issn.1004-132X.2015.16.023
|
Sharma N, Jangra K K, Raj T. Fabrication of NiTi alloy: A review[J]. Proceedings of the Institution of Mechanical Engineers Part L Journal of Materials Design & Applications, 2015, 232(3): 250 − 269.
|
Elahinia M, Moghaddam N S, Andani M T, et al. Fabrication of NiTi through additive manufacturing: A review[J]. Progress in Materials Science, 2016, 83: 630 − 663.
|
Halani P R, Kaya I, Shin Y C, et al. Phase transformation characteristics and mechanical characterization of nitinol synthesized by laser direct deposition[J]. Materials Science & Engineering A, 2013, 559: 836 − 843.
|
Taheri Andani M, Saedi S, Turabi A S, et al. Mechanical and shape memory properties of porous Ni50.1Ti49.9 alloys manufactured by selective laser melting[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 68: 224 − 231.
|
Hfer K, Mayr P. 3DPMD–Arc-based additive manufacturing with titanium powder as raw material[J]. China Welding, 2019, 28(1): 11 − 15.
|
李雷, 于治水, 张培磊. TC4 钛合金电弧增材制造叠层组织特征[J]. 焊接学报, 2018, 39(12): 37 − 43.
Li Lei, Yu Zhishui, Zhang Peilei. Microstructural characteristics of wire and arc additive layer manufacturing of TC4 components[J]. Transactions of the China Welding Institution, 2018, 39(12): 37 − 43.
|
Yang Z W, Fu L Q, Wang S L, et al. Balance of strength and plasticity of additive manufactured Ti-6Al-4V alloy by forming TiB whiskers with cyclic gradient distribution[J]. Additive Manufacturing, 2021, 39: 1 − 10. doi: 10.1016/j.addma.2021.101883
|
刘齐, 张萌, 付乐琪, 等. 原位合金化双丝电弧增材制造γ-TiAl组织性能研究[J]. 稀有金属材料与工程, 2020, 412(11): 271 − 276.
Liu Qi, Zhang Meng, Fu Leqi, et al. Microstructure and properties of γ-TiAl fabricated by In-situ alloying assisted Double-wire arc additive manufacturing[J]. Rare Metal Materials and Engineering, 2020, 412(11): 271 − 276.
|
冯英超, 刘金平, 王世杰. 固溶处理对Inconel 625合金电弧增材组织的影响[J]. 焊接学报, 2018, 39(6): 81 − 85.
Feng Yingchao, Liu Jinping, Wang Shijie. Effect of solution treatment on the microstructure of Inconel 625 alloy fabricated by arc additive manufacturing[J]. Transactions of the China Welding Institution, 2018, 39(6): 81 − 85.
|
王磊磊, 张占辉, 徐得伟. 双脉冲电弧增材制造数值模拟与晶粒细化机理[J]. 焊接学报, 2019, 40(4): 137 − 140, 147. doi: 10.12073/j.hjxb.2019400114
Wang Leilei, Zhang Zhanhui, Xu Dewei. Numerical simulation and mechanism study of grain refinement during double pulsed wire arc additive manufacturing[J]. Transactions of the China Welding Institution, 2019, 40(4): 137 − 140, 147. doi: 10.12073/j.hjxb.2019400114
|
Wang L, Chen S, Xiao J, et al. Droplet-targeting laser hybrid indirect arc for additive manufacturing technology-A preliminary study[J]. China Welding, 2020, 29(1): 50 − 55.
|
Lu B W, Cui X F, Liu E B, et al. Influence of microstructure on phase transformation behavior and mechanical properties of plasma arc deposited shape memory alloy[J]. Materials Science and Engineering A, 2018, 736: 130 − 136. doi: 10.1016/j.msea.2018.08.098
|
Wang J, Pan Z X. Evolution of crystallographic orientation, precipitation, phase transformation and mechanical properties realized by enhancing deposition current for dual-wire arc additive manufactured Ni-rich NiTi alloy[J]. Additive Manufacturing, 2020, 34: 1 − 10. doi: 10.1016/j.addma.2020.101240
|
Wang J, Pan Z X, Yang G S, et al. Location dependence of microstructure, phase transformation temperature and mechanical properties on Ni-rich NiTi alloy fabricated by wire arc additive manufacturing[J]. Materials Science and Engineering, 2019, 749: 218 − 222. doi: 10.1016/j.msea.2019.02.029
|
Zhao X Q, Yan X M, Yang Y Z, et al. Wide hysteresis NiTi(Nb) shape memory alloys with low Nb content (4.5 at. %)[J]. Materials Science & Engineering A, 2006, 438: 575 − 578.
|
Liu W, Zhao X Q. Mechanical properties and transformation behavior of NiTiNb shape memory alloys[J]. Chinese Journal of Aeronautics, 2009, 22(5): 540 − 543. doi: 10.1016/S1000-9361(08)60138-7
|
Wang M J, Jiang M Y, Liao G Y, et al. Martensitic transformation involved mechanical behaviors and wide hysteresis of NiTiNb shape memory alloys[J]. Progress in Natural Science Materials International, 2012, 22(2): 130 − 138. doi: 10.1016/j.pnsc.2012.03.010
|
Fan Q C, Sun M Y, Zhang Y H, et al. Influence of precipitation on phase transformation and mechanical properties of Ni-rich NiTiNb alloys[J]. Materials Characterization, 2019, 154: 148 − 160. doi: 10.1016/j.matchar.2019.05.013
|
Jiang S Y, Liang Y L, Zhang Y Q, et al. Influence of addition of Nb on phase transformation, microstructure and mechanical properties of equiatomic NiTi SMA[J]. Journal of Materials Engineering and Performance, 2016, 25(10): 1 − 11.
|
Bewerse C, Brinson L C, Dunand D C. Microstructure and mechanical properties of as-cast quasibinary NiTi–Nb eutectic alloy[J]. Materials Science & Engineering A, 2015, 627: 360 − 368.
|
Shi H, Pourbabak S, Van Humbeeck J, et al. Electron microscopy study of Nb-rich nanoprecipitates in Ni–Ti–Nb and their influence on the martensitic transformation[J]. Scripta Materialia, 2012, 67(12): 939 − 942. doi: 10.1016/j.scriptamat.2012.08.020
|
Schryvers D, Cao S, Pourbabak S, et al. Recent EM investigations on nano- and micro-defect structures in SMAs[J]. Journal of Alloys & Compounds, 2013, 577: S705 − S709.
|