Advanced Search
XU Bo, WANG Ying, ZHANG Meng, YANG Zhenwen, WANG Dongpo. Effect of Nb alloying on wire arc additive manufacturing NiTi-based shape memory alloys[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(8): 1-7. DOI: 10.12073/j.hjxb.20210317003
Citation: XU Bo, WANG Ying, ZHANG Meng, YANG Zhenwen, WANG Dongpo. Effect of Nb alloying on wire arc additive manufacturing NiTi-based shape memory alloys[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(8): 1-7. DOI: 10.12073/j.hjxb.20210317003

Effect of Nb alloying on wire arc additive manufacturing NiTi-based shape memory alloys

More Information
  • Received Date: March 16, 2021
  • Available Online: October 24, 2021
  • NiTi alloy is a widely used shape memory alloy, in which Ti47Ni44Nb9 alloy is a reliable material for aviation pipe coupling. In this research, Ni52Ti48 alloy was fabricated by double wire arc additive manufacturing (WAAM) method and Ti47Ni44Nb9 alloy was obtained by in situ alloying with Nb element. The typical microstructure, compression properties, phase transformation temperature and shape memory effect of the alloy were studied. The effects of Nb element addition on the microstructure and properties of WAAM nickel-titanium alloy were analyzed. The results show that the microstructure of NiTi alloy fabricated by WAAM is characterized by coarse B2 equivalent axonal grains in the lower part, columnar B2 phase dendrite in the middle part, and relatively fine B2 equivalent axonal grains in the top part. Besides B2 phase grains, fine β-Nb phase precipitates at the grain boundary after the addition of Nb element, which makes the compress strength increased by 7.9% and 3.1% respectively in transverse and longitudinal directions, while the shape memory recovery ratio decreased by 4.0%,which is due to the fact that the plastic deformation of β-Nb particles precipitated between grain does not recover during loading, and the hysteresis of phase transformation temperature increased from −6.4 ℃ to 40.9 ℃, which makes shape memory alloy more convenient for storage and assembly when used as pipe coupling.
  • 徐祖耀. 形状记忆材料[M]. 上海: 上海交通大学出版社, 2000.

    Xu Zuyao. Shape memory materials[M]. Shanghai: Shanghai Jiao Tong University Press, 2000.
    Madangopal K. The self accommodating martensitic microstructure of Ni-Tishape memory alloys[J]. Acta materialia, 1997, 45(12): 5347 − 5365. doi: 10.1016/S1359-6454(97)00161-4
    郑玉峰. 工程用镍钛合金[M]. 北京: 科学出版社, 2014.

    Zheng Yufeng. Nickel titanium alloy for engineering use[M]. Beijing: Science Press, 2014.
    胡茜. 成分梯度TiNi合金的马氏体相变行为与阻尼特性[D]. 哈尔滨: 哈尔滨工程大学材料学院, 2013.

    Hu Xi. Martensitic transformation behavior and damping characteristics of TiNi alloy with gradient composition[D]. Harbin: School of Materials Engineering, Harbin Engineering University, 2013.
    刘康凯, 贺志荣, 吴佩泽, 等. Ti-Ni基形状记忆合金的特性及其影响因素研究进展[J]. 铸造技术, 2017, 38(7): 1535 − 1539.

    Liu Kangkai, He Zhirong, Wu Peize, et al. Research progress of characteristics of Ti-Ni based shape memory alloys and their influencing factors[J]. Foundry Technology, 2017, 38(7): 1535 − 1539.
    欧阳小平. 航空管接头综述[J]. 中国机械工程, 2015, 16: 2262 − 2271. doi: 10.3969/j.issn.1004-132X.2015.16.023

    Ouyang Xiaoping. Overview of aviation hydraulic fittings[J]. China Mechanical Engineering, 2015, 16: 2262 − 2271. doi: 10.3969/j.issn.1004-132X.2015.16.023
    Sharma N, Jangra K K, Raj T. Fabrication of NiTi alloy: A review[J]. Proceedings of the Institution of Mechanical Engineers Part L Journal of Materials Design & Applications, 2015, 232(3): 250 − 269.
    Elahinia M, Moghaddam N S, Andani M T, et al. Fabrication of NiTi through additive manufacturing: A review[J]. Progress in Materials Science, 2016, 83: 630 − 663.
    Halani P R, Kaya I, Shin Y C, et al. Phase transformation characteristics and mechanical characterization of nitinol synthesized by laser direct deposition[J]. Materials Science & Engineering A, 2013, 559: 836 − 843.
    Taheri Andani M, Saedi S, Turabi A S, et al. Mechanical and shape memory properties of porous Ni50.1Ti49.9 alloys manufactured by selective laser melting[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 68: 224 − 231.
    Hfer K, Mayr P. 3DPMD–Arc-based additive manufacturing with titanium powder as raw material[J]. China Welding, 2019, 28(1): 11 − 15.
    李雷, 于治水, 张培磊. TC4 钛合金电弧增材制造叠层组织特征[J]. 焊接学报, 2018, 39(12): 37 − 43.

    Li Lei, Yu Zhishui, Zhang Peilei. Microstructural characteristics of wire and arc additive layer manufacturing of TC4 components[J]. Transactions of the China Welding Institution, 2018, 39(12): 37 − 43.
    Yang Z W, Fu L Q, Wang S L, et al. Balance of strength and plasticity of additive manufactured Ti-6Al-4V alloy by forming TiB whiskers with cyclic gradient distribution[J]. Additive Manufacturing, 2021, 39: 1 − 10. doi: 10.1016/j.addma.2021.101883
    刘齐, 张萌, 付乐琪, 等. 原位合金化双丝电弧增材制造γ-TiAl组织性能研究[J]. 稀有金属材料与工程, 2020, 412(11): 271 − 276.

    Liu Qi, Zhang Meng, Fu Leqi, et al. Microstructure and properties of γ-TiAl fabricated by In-situ alloying assisted Double-wire arc additive manufacturing[J]. Rare Metal Materials and Engineering, 2020, 412(11): 271 − 276.
    冯英超, 刘金平, 王世杰. 固溶处理对Inconel 625合金电弧增材组织的影响[J]. 焊接学报, 2018, 39(6): 81 − 85.

    Feng Yingchao, Liu Jinping, Wang Shijie. Effect of solution treatment on the microstructure of Inconel 625 alloy fabricated by arc additive manufacturing[J]. Transactions of the China Welding Institution, 2018, 39(6): 81 − 85.
    王磊磊, 张占辉, 徐得伟. 双脉冲电弧增材制造数值模拟与晶粒细化机理[J]. 焊接学报, 2019, 40(4): 137 − 140, 147. doi: 10.12073/j.hjxb.2019400114

    Wang Leilei, Zhang Zhanhui, Xu Dewei. Numerical simulation and mechanism study of grain refinement during double pulsed wire arc additive manufacturing[J]. Transactions of the China Welding Institution, 2019, 40(4): 137 − 140, 147. doi: 10.12073/j.hjxb.2019400114
    Wang L, Chen S, Xiao J, et al. Droplet-targeting laser hybrid indirect arc for additive manufacturing technology-A preliminary study[J]. China Welding, 2020, 29(1): 50 − 55.
    Lu B W, Cui X F, Liu E B, et al. Influence of microstructure on phase transformation behavior and mechanical properties of plasma arc deposited shape memory alloy[J]. Materials Science and Engineering A, 2018, 736: 130 − 136. doi: 10.1016/j.msea.2018.08.098
    Wang J, Pan Z X. Evolution of crystallographic orientation, precipitation, phase transformation and mechanical properties realized by enhancing deposition current for dual-wire arc additive manufactured Ni-rich NiTi alloy[J]. Additive Manufacturing, 2020, 34: 1 − 10. doi: 10.1016/j.addma.2020.101240
    Wang J, Pan Z X, Yang G S, et al. Location dependence of microstructure, phase transformation temperature and mechanical properties on Ni-rich NiTi alloy fabricated by wire arc additive manufacturing[J]. Materials Science and Engineering, 2019, 749: 218 − 222. doi: 10.1016/j.msea.2019.02.029
    Zhao X Q, Yan X M, Yang Y Z, et al. Wide hysteresis NiTi(Nb) shape memory alloys with low Nb content (4.5 at. %)[J]. Materials Science & Engineering A, 2006, 438: 575 − 578.
    Liu W, Zhao X Q. Mechanical properties and transformation behavior of NiTiNb shape memory alloys[J]. Chinese Journal of Aeronautics, 2009, 22(5): 540 − 543. doi: 10.1016/S1000-9361(08)60138-7
    Wang M J, Jiang M Y, Liao G Y, et al. Martensitic transformation involved mechanical behaviors and wide hysteresis of NiTiNb shape memory alloys[J]. Progress in Natural Science Materials International, 2012, 22(2): 130 − 138. doi: 10.1016/j.pnsc.2012.03.010
    Fan Q C, Sun M Y, Zhang Y H, et al. Influence of precipitation on phase transformation and mechanical properties of Ni-rich NiTiNb alloys[J]. Materials Characterization, 2019, 154: 148 − 160. doi: 10.1016/j.matchar.2019.05.013
    Jiang S Y, Liang Y L, Zhang Y Q, et al. Influence of addition of Nb on phase transformation, microstructure and mechanical properties of equiatomic NiTi SMA[J]. Journal of Materials Engineering and Performance, 2016, 25(10): 1 − 11.
    Bewerse C, Brinson L C, Dunand D C. Microstructure and mechanical properties of as-cast quasibinary NiTi–Nb eutectic alloy[J]. Materials Science & Engineering A, 2015, 627: 360 − 368.
    Shi H, Pourbabak S, Van Humbeeck J, et al. Electron microscopy study of Nb-rich nanoprecipitates in Ni–Ti–Nb and their influence on the martensitic transformation[J]. Scripta Materialia, 2012, 67(12): 939 − 942. doi: 10.1016/j.scriptamat.2012.08.020
    Schryvers D, Cao S, Pourbabak S, et al. Recent EM investigations on nano- and micro-defect structures in SMAs[J]. Journal of Alloys & Compounds, 2013, 577: S705 − S709.

Catalog

    Article views (505) PDF downloads (67) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return