Citation: | ZHOU Yaju, YIN Shengming, XIA Yongzhong, YI Guoqiang, XUE Lihong, YAN Youwei. Effect of heat treatment on the microstructure and mechanical properties of wire arc additively manufactured ferrite/martensitic steel for nuclear applications[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(10): 18-26. DOI: 10.12073/j.hjxb.20221011001 |
Shang Z, Ding Jie, Fan C, et al. Tailoring the strength and ductility of T91 steel by partial tempering treatment[J]. Acta Materialia, 2019, 169: 209 − 224. doi: 10.1016/j.actamat.2019.02.043
|
Hishinuma A, Kohyama A, Klueh R L, et al. Current status and future R&D for reduced-activation ferritic/martensitic steels[J]. Journal of Nuclear Materials, 1998, 258: 193 − 204.
|
Kano S, Yang H, Suzue R, et al. Precipitation of carbides in F82H steels and its impact on mechanical strength[J]. Nuclear Materials and Energy, 2016, 9: 331 − 337. doi: 10.1016/j.nme.2016.09.017
|
Chen J, Liu C, Liu Y, et al. Effects of tantalum content on the microstructure and mechanical properties of low-carbon RAFM steel[J]. Journal of Nuclear Materials, 2016, 479: 295 − 301. doi: 10.1016/j.jnucmat.2016.07.029
|
Hu X, Huang L, Yan W, et al. Evolution of microstructure and changes of mechanical properties of CLAM steel after long-term aging[J]. Materials Science & Engineering: A, 2013, 586: 253 − 258.
|
Sahoo K C, Vanaja J, Parameswaran P, et al. Effect of thermal ageing on microstructure, tensile and impact properties of reduced activated ferritic-martensitic steel[J]. Materials Science & Engineering: A, 2017, 686: 54 − 64.
|
易果强, 周亚举, 张鹏, 等. 电弧熔丝增材制造ODS钢的成型工艺及组织性能[J]. 材料热处理学报, 2022, 43(6): 128 − 136.
Yi Guoqiang, Zhou Yaju, Zhang Peng, et al. Forming process, microstructure and properties of ODS steel prepared by wire arc additive manufacturing[J]. Journal of Materials Heat Treatment, 2022, 43(6): 128 − 136.
|
陈树君, 张所来, 黄宁, 等. 电弧熔丝脉冲GTAW熔滴过渡行为分析[J]. 焊接学报, 2017, 38(1): 17 − 21.
Chen Shujun, Zhang Suolai, Huang Ning, et al. Analysis of droplet transfer behavior of wire and arc pulse GTAW[J]. Transactions of the China Welding Institution, 2017, 38(1): 17 − 21.
|
苗玉刚, 王清龙, 李春旺, 等. 中厚板钛合金激光-CMT复合焊接工艺特性分析[J]. 焊接学报, 2022, 43(8): 42 − 47.
Miao Yugang, Wang Qinglong, Li Chunwang, et al. Characterization of laser arc hybrid welding process for medium-thick titanium alloy plate[J]. Transactions of the China Welding Institution, 2022, 43(8): 42 − 47.
|
郝婷婷, 李承德, 王旭, 等. 钇含量对电弧增材制造2319铝合金组织与性能的影响[J]. 焊接学报, 2022, 43(7): 49 − 56.
Hao Tingting, Li Chengde, Wang Xu, et al. Effect of yttrium content on microstructure and properties of 2319 aluminum alloy fabricated by wire arc additive manufacturing[J]. Transactions of the China Welding Institution, 2022, 43(7): 49 − 56.
|
Jia Jinlong, Zhao Yue, Dong Minghua, et al. Numerical simulation on residual stress and deformation for WAAM parts of aluminum alloy based on temperature function method[J]. China Welding, 2020, 29(2): 1 − 8.
|
Dharmendra C, Hadadzadeh A, Amirkhiz B S, et al. Microstructural evolution and mechanical behavior of nickel aluminum bronze Cu-9Al-4Fe-4Ni-1Mn fabricated through wire-arc additive manufacturing[J]. Additive Manufacturing, 2019, 30: 100872. doi: 10.1016/j.addma.2019.100872
|
Belotti L P, Dommelen J A W, Geers M G D, et al. Microstructural characterisation of thick-walled wire arc additively manufactured stainless steel[J]. Journal of Materials Processing Technology, 2022, 299: 117373. doi: 10.1016/j.jmatprotec.2021.117373
|
左秀荣, 陈蕴博, 王淼辉, 等. 铁素体/马氏体双相钢的组织及性能[J]. 材料热处理学报, 2010, 31(1): 29 − 34.
Zuo Xiurong, Chen Yunbo, Wang Miaohui, et al. Microstructure and mechanical properties of ferrite/martensite dual-phase steel[J]. Journal of Materials Heat Treatment, 2010, 31(1): 29 − 34.
|
Zhou Y J, Yin S M, Jiang Y, et al. Wire and arc additive manufacturing fabrication of ODS-RAMF steels and preliminary evaluation on microstructures and mechanical properties[J]. Journal of Nuclear Materials, 2022, 340: 154068.
|
He H, Huang S, Wang H, et al. Isothermal holding processes of a reduced activation ferritic/martensitic steel to form a bainitic/martensitic multiphase microstructure and its mechanical properties[J]. Materials Science & Engineering: A, 2021, 822: 141645.
|
Tanvir A, Ahsan M, Seo G, et al. Phase stability and mechanical properties of wire + arc additively manufactured H13 tool steel at elevated temperatures[J]. Journal of Materials Science & Technology, 2021, 67(8): 80 − 94. doi: 10.1016/j.jmst.2020.04.085
|
Morito S, Edamatsu Y, Ichinotani K, et al. Quantitative analysis of three-dimensional morphology of martensite packets and blocks in iron-carbon-manganese steels[J]. Journal of Alloys Compounds, 2013, 577: S587 − S592. doi: 10.1016/j.jallcom.2012.02.004
|
Dou P, Jiang S M, Qiu L L, et al. Effects of contents of Al, Zr and Ti on oxide particles in Fe-15Cr-2W-0.35Y2O3 ODS steels[J]. Journal of Nuclear Materials, 2020, 531: 152025. doi: 10.1016/j.jnucmat.2020.152025
|
Arkhurst B M, Bae J H, Na M Y, et al. Effect of tellurium on the microstructure and mechanical properties of Fe-14Cr oxide-dispersion-strengthened steels produced by additive manufacturing[J]. Journal of Materials Science and Technology, 2021, 95: 114 − 126. doi: 10.1016/j.jmst.2021.03.068
|
Zhang Y, Liu D W, Wang Y, et al. A 9%Cr ODS steel composite material reinforced by Ti layers[J]. Materials Science & Engineering: A, 2016, 676: 253 − 262.
|
Zhou Y J, Yin S M, Chen Z L, et al. Wire and arc additive manufacturing of inner-channel structured RAFM: Effect of microalloying Ti on microstructure and mechanical properties[J]. Fusion Engineering and Design, 2022, 184: 113296. doi: 10.1016/j.fusengdes.2022.113296
|
Liu X Y, Sui Y, Li J B, et al. Laser metal deposited steel alloys with uniform microstructures and improved properties prepared by addition of small amounts of dispersed Y2O3 nanoparticles[J]. Materials Science & Engineering: A, 2021, 806: 140827.
|
[1] | XU Nan, XU Yuzhui, GAO Tianxu, SONG Qining, BAO Yefeng. The influence of welding thermal cycle on the grain structure of friction stir welded 5083 aluminum alloy joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION. DOI: 10.12073/j.hjxb.20240315001 |
[2] | XIAO Wenbo, HE Yinshui, YUAN Haitao, MA Guohong. Synchronous real-time detection of weld bead geometry and the welding torch in galvanized steel GAMW[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(12): 78-82. DOI: 10.12073/j.hjxb.20201021001 |
[3] | CUI Bing1,2, PENG Yun2, PENG Mengdu2, AN Tongbang2. Effects of weld thermal cycle on microstructure and properties of heataffected zone of Q890 processed steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(7): 35-39. DOI: 10.12073/j.hjxb.20150427004 |
[4] | LIU Haodong, HU Fangyou, CUI Aiyong, LI Hongbo, HUANG Fei. Experimental on thermal cycle of laser welding with ultrasonic processing across different phases[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(8): 13-17. |
[5] | LÜ Xiaochun, HE Peng, QIN Jian, DU Bing, HU Zhongquan. Effect of welding thermal cycle on microstructure and properties of intercritically reheated coarse grained heat affected zone in SA508-3 steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(12): 47-49. |
[6] | WU Dong, LU Shanping, LI Dianzhong. Effect of welding thermal cycle on high temperature mechanical property of Ni-Fe base superalloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(9): 69-72. |
[7] | HU Yanhua, CHEN Furong, XIE Ruijun, LI Haitao. Designment of test program system for welding thermal cycle in weld zone[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (5): 93-96. |
[8] | HU Yanhua, CHEN Furong, XIE Ruijun, LI Haitao. In-situ detection of weld metal thermal cycle of 10CrMo910 steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (10): 105-107. |
[9] | CHEN Yu-hua, WANG Yong. Numerical simulation of thermal cycle of in-service welding onto active pipeline based on SYSWELD[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (1): 85-88. |
[10] | YAO Shang-wei, ZHAO Lu-yu, XU Ke, WANG Ren-fu. Effect of welding thermal cycle on toughness of continuous cast-ing steel center[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (10): 97-100. |
1. |
温淳杰,姚屏,范谨锐,曾祥坤,喻小燕,武威. 316L不锈钢和镍基合金梯度材料MIG焊电弧增材制造工艺研究. 精密成形工程. 2024(10): 208-216 .
![]() |