Advanced Search
YE Chao, HOU Liang, CHEN Yun, XU Yang, LIU Wenzhi, WANG Zhenzhong. Research on optimization of macroscopic and microscopic characteristics of 316L stainless steel by laser cladding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(3): 8-16. DOI: 10.12073/j.hjxb.20220426001
Citation: YE Chao, HOU Liang, CHEN Yun, XU Yang, LIU Wenzhi, WANG Zhenzhong. Research on optimization of macroscopic and microscopic characteristics of 316L stainless steel by laser cladding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(3): 8-16. DOI: 10.12073/j.hjxb.20220426001

Research on optimization of macroscopic and microscopic characteristics of 316L stainless steel by laser cladding

More Information
  • Received Date: April 25, 2022
  • Available Online: March 05, 2023
  • In order to obtain high-quality laser cladding fabricated parts, a process optimization method targeting macroscopic and microscopic characteristics is proposed for 316L stainless steel as an example, based on the problem that existing studies only target geometric morphology for optimization.Firstly, an empirical statistical model of the geometric morphology and microstructure of the cladding layer and the main process parameters is constructed through full factorial design and regression analysis, and the influence of process parameters on the geometric morphology and the average intercept of microscopic grain is discussed. Then, the geometric morphology and the average grain intercept are selected as the indicators for evaluating the quality of cladding, and the optimal process parameters and suitable process range are determined by the composite desirability function. Finally, the feasibility and effectiveness of the method are verified. The results show that under the condition of the best process parameters, the statistical model of macroscopic and microscopic characteristics has high prediction accuracy. The prepared cladding samples not only have higher microhardness, but also have excellent tensile properties: the yield strength is 439 MPa, the tensile strength is 751 MPa, and the elongation is 26%. The process optimization of macroscopic and microscopic characteristics is achieved.
  • 刘伟, 李能, 周标, 等. 复杂结构与高性能材料增材制造技术进展[J]. 机械工程学报, 2019, 55(20): 128 − 151.

    Liu Wei, Li Neng, Zhou Biao, et al. Progress in additive manufacturing on complex structures and high-performance materials[J]. Journal of Mechanical Engineering, 2019, 55(20): 128 − 151.
    刘立君, 刘大宇, 王晓陆, 等. H13钢激光熔覆陶瓷修复层的参数优化[J]. 焊接学报, 2020, 41(7): 65 − 70. doi: 10.12073/j.hjxb.20200508002

    Liu Lijun, Liu Dayu, Wang Xiaolu, et al. Parameter optimization of laser cladding ceramic repair layer of H13 steel[J]. Transactions of the China Welding Institution, 2020, 41(7): 65 − 70. doi: 10.12073/j.hjxb.20200508002
    Gao J, Wu C, Hao Y, et al. Numerical simulation and experimental investigation on three-dimensional modelling of single-track geometry and temperature evolution by laser cladding[J]. Optics & Laser Technology, 2020, 129: 106287 − 106298.
    Gao S, Feng Y, Wang J, et al. Molten pool characteristics of a nickel-titanium shape memory alloy for directed energy deposition[J]. Optics & Laser Technology, 2021, 142: 107215 − 107228.
    Huang Y, Khamesee M B, Toyserkani E. A comprehensive analytical model for laser powder-fed additive manufacturing[J]. Additive Manufacturing, 2016, 12(partA): 90 − 99.
    Ertay D S, Vlasea M, Erkorkmaz K. Thermomechanical and geometry model for directed energy deposition with 2d/3d toolpaths[J]. Additive Manufacturing, 2020, 35: 1 − 42.
    Ansari M, Shoja Razavi R, Barekat M. An empirical-statistical model for coaxial laser cladding of NiCrAlY powder on Inconel 738 superalloy[J]. Optics & Laser Technology, 2016, 86: 136 − 144.
    Erfanmanesh M, Abdollah-Pour H, Mohammadian-Semnani H, et al. An empirical-statistical model for laser cladding of WC-12Co powder on AISI 321 stainless steel[J]. Optics & Laser Technology, 2017, 97: 180 − 186.
    Nabhani M, Razavi R S, Barekat M. An empirical-statistical model for laser cladding of Ti-6Al-4V powder on Ti-6Al-4V substrate[J]. Optics & Laser Technology, 2018, 100: 265 − 271.
    Wen P, Feng Z, Zheng S. Formation quality optimization of laser hot wire cladding for repairing martensite precipitation hardening stainless steel[J]. Optics & Laser Technology, 2015, 65: 180 − 188.
    Sun Y, Hao M. Statistical analysis and optimization of process parameters in Ti6Al4V laser cladding using Nd: YAG laser[J]. Optics and Lasers in Engineering, 2012, 50(7): 985 − 995. doi: 10.1016/j.optlaseng.2012.01.018
    Alam M K, Urbanic R J, Nazemi N, et al. Predictive modeling and the effect of process parameters on the hardness and bead characteristics for laser-cladded stainless steel[J]. The International Journal of Advanced Manufacturing Technology, 2018, 94(1): 397 − 413.
    Zhang Hui, Zou Yong, Zou Zengda, et al. Comparative study on continuous and pulsed wave fiber laser cladding in-situ titanium-vanadium carbides reinforced Fe-based composite layer[J]. Materials Letters, 2015, 139: 255 − 257. doi: 10.1016/j.matlet.2014.10.102
    Li Ruidi, Yuan Tiechui, Qiua Zili, et al. Nanostructured Co-Cr-Fe alloy surface layer fabricated by combination of laser clad and friction stir processing[J]. Surface & Coatings Technology, 2014, 258: 412 − 425.
    Xie S, Li R, Yuan T, et al. Laser cladding assisted by friction stir processing for preparation of deformed crack-free Ni-Cr-Fe coating with nanostructure[J]. Optics Laser Technology, 2018, 337: 426 − 433.
    Montero-Sistiaga Maria L, Godino-Martinez Miguel, Boschmans Kurt, et al. Microstructure evolution of 316L produced by HP-SLM (high power selective laser melting)[J]. Additive Manufacturing, 2018, 23: 402 − 410. doi: 10.1016/j.addma.2018.08.028
    Zhang Z, Farahmand P, Kovacevic R. Laser cladding of 420 stainless steel with molybdenum on mild steel A36 by a high power direct diode laser[J]. Materials & Design, 2016, 109: 686 − 699.
    Zhang D, Qiu D, Gibson M A, et al. Additive manufacturing of ultrafine-grained high-strength titanium alloys[J]. Nature, 2019, 576(7785): 91 − 95. doi: 10.1038/s41586-019-1783-1
    Alali M, Todd I, Wynne B P. Through-thickness microstructure and mechanical properties of electron beam welded 20 mm thick AISI 316L austenitic stainless steel[J]. Materials & Design, 2017, 130: 488 − 500.
    Erinosho M F, Akinlabi E T. Central composite design on the volume of laser metal deposited Ti6Al4V and Cu[J]. Materiali in Tehnologije, 2017, 51(3): 419 − 426. doi: 10.17222/mit.2016.019
    Ma Pengzhao, Wu Yu, Zhang Pengju, et al. Solidification prediction of laser cladding 316L by the finite element simulation[J]. The International Journal of Advanced Manufacturing Technology, 2019, 103(1): 957 − 969.
    Wang L, Xue J, Wang Q. Correlation between arc mode, microstructure, and mechanical properties during wire arc additive manufacturing of 316L stainless steel[J]. Materials Science & Engineering, 2019, 751(28): 183 − 190.
  • Related Articles

    [1]LI Geng, WANG Shang, SUN Yuxin, MENG Junhao, WU Wenzhi, TIAN Yanhong. Reliability optimization of solder joints in large-sized COTS devices based on solder mask layer design[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION. DOI: 10.12073/j.hjxb.20240319003
    [2]LIU Xudong, SA Zicheng, FENG Jiayun, LI Haozhe, TIAN Yanhong. The Development Status On Advanced Packaging Copper Pillar Bump Interconnection Technology and Reliability[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION. DOI: 10.12073/j.hjxb.20240718001
    [3]WANG Haichao, PENG Xiaowei, GUO Fan, DING Yingjie, CHEN Qiang. Research on reliability of CCGA reinforcement process for aerospace electronic products[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(7): 102-107. DOI: 10.12073/j.hjxb.20210907001
    [4]NAN Xujing, LIU Xiaoyan, CHEN Leida, ZHANG Tao. Effect of thermal cycling on reliability of solder joints of ceramic column grid array package[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(2): 81-85. DOI: 10.12073/j.hjxb.20200331003
    [5]TIAN Ye. Study on reliability of micro-solder joints for flip chip assemblies under thermal shock-crack growth mechanism[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(9): 43-45,50.
    [6]YE Huan, XUE Songbai, ZHANG Liang, WANG Hui. Finite element analysis on reliability of lead-free soldered joints for CSP device[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (11): 93-96.
    [7]JI Feng, XUE Songbai, ZHANG Liang, WANG Hui. Finite element analysis on soldered joint reliability of QFN device[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (10): 57-60.
    [8]GAO Lili, XUE Songbai, ZHANG Liang, SHENG Zhong. Finite element analysis on influencing factors of soldered column reliability in a CCGA device[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (7): 93-96.
    [9]LIN Guoxiang, YE Jinbao, QIU Changjun. Calculating method of reliability on anti fatigue fracture of weld[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (1): 50-52.
    [10]ZHANG Liang, XUE Songbai, LU Fangyan, HAN Zongjie. Finite element analysis on soldered joint reliability of QFP device with different solders[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (10): 45-48, 52.
  • Cited by

    Periodical cited type(2)

    1. 于一强,张宝贵,杨琨,唐一峰,陈宗旭,张雪芹. 超薄不锈钢激光焊接工艺对接头力学性能的影响. 金属加工(热加工). 2025(03): 90-94 .
    2. 韩晓辉,刘桐,李刚卿,方喜风. 轨道客车连接技术难题及发展趋势. 电焊机. 2024(09): 1-13 .

    Other cited types(0)

Catalog

    Article views (279) PDF downloads (70) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return