Advanced Search
AN Tongbang, ZHENG Qing, ZHANG Yonglin, LIANG Liang, ZHU Yanjie, PENG Yun. SH-CCT diagram and cold cracking sensitivity of a 1300 MPa grade high strength low alloy steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(9): 75-81. DOI: 10.12073/j.hjxb.20220402002
Citation: AN Tongbang, ZHENG Qing, ZHANG Yonglin, LIANG Liang, ZHU Yanjie, PENG Yun. SH-CCT diagram and cold cracking sensitivity of a 1300 MPa grade high strength low alloy steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(9): 75-81. DOI: 10.12073/j.hjxb.20220402002

SH-CCT diagram and cold cracking sensitivity of a 1300 MPa grade high strength low alloy steel

More Information
  • Received Date: April 01, 2022
  • Available Online: October 19, 2022
  • Austenitization temperature of a 1300 MPa grade high strength low alloy steel was measured by the Formastor-FⅡ thermal expansion measurement, and the effect of cooling time from 800 to 500 ℃(t8/5) on the microstructure transformation and hardness change of the coarse grained heat affected zone was investigated by using Formastor-FⅡ, optical microscope, vickers hardness tester. The experimental results indicated that the microstructure of coarse grained heat affected zone (CGHAZ) was composed of lath martensite with hardness ranging from 438 to 454 HV5, when the t8/5 was 3 ~ 60 s. Along with the extension of cooling time, bainite began to form. When t8/5 was 150 s, the microstructure was mixtures of bainite and martensite with an average hardness of 413 HV5. The microstructure was mixtures of lath bainite and granular bainite with hardness ranging from 341 to 381 HV5 as t8/5 was 300 ~ 600 s. When t8/5 was longer than 600 s, the microstructure mainly consisted of granular bainite with hardness ranging from 269 to 322 HV5. The cold cracking sensitivity evaluation results show that the carbon equivalent CE (IIW) and CEN of the test steel are both greater than 0.5%, which has a certain tendency of cold cracking. Therefore, it is necessary to preheat welding, heat treatment after welding or heat preservation and slow cooling measures to avoid the formation of welding cold cracking.
  • 温长飞, 邓想涛, 王昭东, 等. 1300 MPa级超高强钢临界粗晶热影响区组织和韧性[J]. 钢铁研究学报, 2018, 30(8): 650 − 656. doi: 10.13228/j.boyuan.issn1001-0963.20170383

    Wen Changfei, Deng Xiangtao, Wang Zhaodong, et al. Microstructure and toughness of intercritically reheated coarse-grained heat affected zone in a 1300 MPa grade ultra-high strength steel[J]. Journal of Iron and Steel Research, 2018, 30(8): 650 − 656. doi: 10.13228/j.boyuan.issn1001-0963.20170383
    彭杏娜, 彭云, 田志凌, 等. Ni元素对Cr-Ni-Mo系高强焊缝组织演化的影响[J]. 焊接学报, 2014, 35(9): 32 − 36,38.

    Peng Xingna, Peng Yun, Tian Zhiling, et al. Effect of Ni on the microstructure evolution of Cr-Ni-Mo series high strength weld metal[J]. Transactions of the China Welding Institution, 2014, 35(9): 32 − 36,38.
    An Tongbang, Wei Jinshan, Zhao Lin, et al. Influence of carbon content on microstructure and mechanical properties of 1000 MPa deposited metal by gas metal arc welding[J]. Journal of Iron and Steel Research, International, 2019, 26: 512 − 518. doi: 10.1007/s42243-019-00270-6
    徐彬, 马成勇, 李莉, 等. 1200 MPa级HSLA钢的SH-CCT曲线及其热影响区组织与性能[J]. 材料科学与工艺, 2016, 24(3): 28 − 33.

    Xu Bin, Ma Chengyong, Li Li, et al. SH-CCT diagra, microstructures and properties of heat-affected zone of a 1200 MPa grade HSLA steel[J]. Materials Science & Technology, 2016, 24(3): 28 − 33.
    蒋庆梅, 张小强, 陈礼清, 等. 1000 MPa级超高强钢的SH-CCT曲线及其热影响区的组织和性能[J]. 钢铁研究学报, 2014, 26(1): 47 − 51.

    Jiang Qingmei, Zhang Xiaoqiang, Chen Liqing et al. SH-CCT diagram, microstructures and properties of heat-affected zone in a 1000 MPa grade extra high-strength steel[J]. Journal of Iron and Steel Research, 2014, 26(1): 47 − 51.
    王立军, 蔡庆伍, 余伟, 等. 1500 MPa级低合金超高强钢的微观组织与力学性能[J]. 金属学报, 2010, 46(6): 687 − 694. doi: 10.3724/SP.J.1037.2010.00687

    Wang Lijun, Cai Qingwu, Yu Wei, et al. Microstructure and mechanical properties of 1500 MPa grade ultra-high strength low alloy steel[J]. Acta Metallurgica Sinica, 2010, 46(6): 687 − 694. doi: 10.3724/SP.J.1037.2010.00687
    Wang Chunfang, Wang Maoqiu, Shi Jie, et al. Effect of microstructure refinement on the strength and toughness of low alloy martensitic steel[J]. Journal of Materials Science & Technology, 2007, 23(5): 659 − 664.
    温长飞, 邓想涛, 王昭东, 等. 超高强钢Q1100的SH-CCT曲线及粗晶热影响区组织和性能[J]. 东北大学学报, 2017, 38(6): 809 − 813.

    Wen Changfei, Deng Xiangtao, Wang Zhaodong, et al. SH-CCT diagram, microstructure and properties of coarse grain heat-affected zone in Q1100 ultra-high strength steel[J]. Journal of Northeastern University, 2017, 38(6): 809 − 813.
    Kim Kihyuk, Moon Injun, Kim Kiwon, et al. Influence of carbon equivalent value on the weld bead bending properties of high-strength low-alloy steel plates[J]. Journal of Materials Science & Technology, 2017, 33(4): 321 − 329.
    Long Xiaoyan, Zhang Fucheng, Yang Zhinan. Study on microstructures and properties of carbide-free and carbide-bearing bainitic steels[J]. Materials Science and Engineering:A, 2018, 715: 10 − 16.
    Li Xueda, Fan Yuran, Ma Xiaoping, et al. Influence of martensite-austenite constituents formed at different intercritical temperatures on toughness[J]. Materials & Design, 2015, 67: 457 − 463.
    张文钺. 焊接冶金原理[M]. 北京: 机械工业出版社, 1999.

    Zhang Wenyue. Welding metallurgical principle[M]. Beijing: China Machine Press, 1999.
    卓晓, 李立新, 李弟, 等. EH36-Z35钢在低温环境中的焊接冷裂纹敏感性[J]. 机械工程材料, 2020, 44(8): 47 − 51. doi: 10.11973/jxgccl202008010

    Zhuo Xiao, Li Lixin, Li Di, et al. Weld cold crack sensitivity of EH36-Z35 steel in low temperature environment[J]. Materials for Mechanical Engineering, 2020, 44(8): 47 − 51. doi: 10.11973/jxgccl202008010
    韩伦. 富铜纳米相强化钢焊接性及焊接工艺研究[D]. 哈尔滨: 哈尔滨工程大学, 2020.

    Han Lun. Studies on weldabilitu and welding technology of copper-rich nanoscale precipitate- strengthened steel[D]. Harbin: Harbin Engineering University, 2020.
    曹继明. 用碳当量CEN确定高强钢焊接预热温度[J]. 焊接, 1995(1): 17 − 20, 24.

    Cao Jiming. Determination of preheating temperature by carbonequivalent(CEN) for high strength steel welding[J]. Welding & Joining, 1995(1): 17 − 20, 24.
  • Related Articles

    [1]CAO Zhilong, ZHU Hao, AN Tongbang, WANG Chenji, MA Chengyong, Peng Yun. SH-CCT diagram and microstructure and properties of heat-affected-zone of 1 400 MPa ultra high strength steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(8): 109-115. DOI: 10.12073/j.hjxb.20220913001
    [2]WEN Xue, WANG Honghui, QIAN Jiankang, LU Yingmin, ZHENG Liang, LEI Zhenglong. Cold crack susceptibility analysis of the copper backing outside root welding joints of X80M pipeline steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(12): 105-112. DOI: 10.12073/j.hjxb.20220408001
    [3]SHI Yunzhe, WANG Gangang, CHENG Peng, ZHANG Wei, ZHAO Jiancang, SONG Libin. Influence of heat affected zone microstructure of 12Cr1MoVG reheat cracking susceptibility[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(11): 65-68.
    [4]ZHANG Qunbing, NIU Jing, ZHAO Pengfei, HUANG Yong, LI Zhigang, ZHANG Jianxun. Influence of preheating temperature on cold cracking sensitivity of 12Cr10Co3W2Mo heat resistant steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(4): 87-91.
    [5]LI Yajuan, JIA Peng, LI Wushen, XIE Qi. Establishment of cold cracking susceptibility criterion for X80 pipeline steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (4): 85-88.
    [6]TENG Bin, LI Xiaoyu, LEI Zhen, WANG Xuyou. Analysis on cold crack sensitivity of low alloy high strength steel weld by laser-arc hybrid welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (11): 61-64.
    [7]HUANG Fuxiang, DU Zeyu, SUI Yongli, ZENG Huilin, GUO Xiaojiang. Study on cold cracking susceptibility of domestic X80 pipeline steel using implant tests[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (4): 89-92.
    [8]WEN Jun qin, LIU Xin tian, MO Chun li, ZHANG Shi xing. Microstructure simulation of grain growth in heat affected zone[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2003, (3): 48-51.
    [9]Zhang Wenyue, Zhu Meili, Qin Boxiong. Research on effective diffusive hydrogen and hydrogen diffusive factor of welding cold cracking susceptibility[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1991, (3): 129-135.
    [10]Luo Zhichang, Yao Qin Associat, Tian Yan, Chang Weiming, Lang Yi, Hou Li. STUDY OF COLD CRACKING SUSCEPTIBILITY OF HQ-70 STEEL[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1990, (3): 169-174.
  • Cited by

    Periodical cited type(4)

    1. 李国坤,杨梦颖,潘远樵,冯鑫鑫,王怡如,王泽宇. “芯—鞘”结构强化C_f/SiC-Nb钎焊接头成形机理. 焊接学报. 2025(02): 80-86 . 本站查看
    2. 龙伟民,乔瑞林,秦建,宋晓国,李鹏远,樊喜刚,刘代军. 异质材料钎焊技术与应用研究进展. 焊接学报. 2025(04): 1-21 . 本站查看
    3. 龙伟民. 钎焊材料成分设计准则及典型组织演变机制(英文). 稀有金属材料与工程. 2025(04): 837-853 .
    4. 丁天然,路全彬,张陕南,杨骄. 盾构刀具高性能钎焊技术研究进展. 矿山机械. 2024(02): 53-63 .

    Other cited types(0)

Catalog

    Article views (240) PDF downloads (41) Cited by(4)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return