Advanced Search
CAO Zhilong, ZHU Hao, AN Tongbang, WANG Chenji, MA Chengyong, Peng Yun. SH-CCT diagram and microstructure and properties of heat-affected-zone of 1 400 MPa ultra high strength steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(8): 109-115. DOI: 10.12073/j.hjxb.20220913001
Citation: CAO Zhilong, ZHU Hao, AN Tongbang, WANG Chenji, MA Chengyong, Peng Yun. SH-CCT diagram and microstructure and properties of heat-affected-zone of 1 400 MPa ultra high strength steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(8): 109-115. DOI: 10.12073/j.hjxb.20220913001

SH-CCT diagram and microstructure and properties of heat-affected-zone of 1 400 MPa ultra high strength steel

More Information
  • Received Date: September 12, 2022
  • Available Online: July 20, 2023
  • The effects of different cooling rates on the microstructure transformation and properties of the coarse grained heat affected zone (HAZ) of the 1 400 MPa ultra-high-strength steel were studied by using a Formastor-F Ⅱ automatic phase changer, combined with metallographic microscope (OM) and Vickers hardness test. According to the simulation results, the welding continuous cooling transformation curve (SH-CCT) is drawn, and the formula method is used to determine the optimal welding parameters combined with the welding process test. The results show that the critical transformation cooling rate of martensite in 1 400 MPa ultra-high strength steel is about 5 ℃/s. When the cooling rate is greater than 5 ℃/s, the microstructure of the coarse grained zone in the heat-affected zone is single lath martensite, and the hardness value is 487 ~ 509 HV5. When the cooling rate is less than 5 ℃/s, medium and high temperature phase transformation products appear in the structure of the coarse-grained region, which are lath bainite, granular bainite and ferrite, and the hardness value drops to 487 ~ 260 HV5. At the same time, M-A component also appeared in the tissue, and its content increased first and then decreased with the decrease of cooling rate. and the shape also changed from dispersed granular to intermittent long strip or block distribution. When welding 1 400 MPa ultra-high-strength steel with a thickness of 8 mm, the welding heat input is controlled within 20 kJ/cm, the microstructure of the coarse-grained zone is lath martensite, the hardness value is maintained at about 500 HV5, and no softening occurs in the coarse-grained region, which meets engineering requirements.
  • "工业绿色发展工程科技战略及对策研究"课题组. 工业绿色发展工程科技战略及对策[J]. 中国工程科学, 2015, 17(7): 32 − 36. doi: 10.3969/j.issn.1009-1742.2015.07.008

    The Research Group for Strategic Study on Green Development Engineering for Industry. Strategic study on green development engineering for industry[J]. Strategic Study of CAE, 2015, 17(7): 32 − 36. doi: 10.3969/j.issn.1009-1742.2015.07.008
    张春霞, 王海风, 张寿荣, 等. 中国钢铁工业绿色发展工程科技战略及对策[J]. 钢铁, 2015, 50(10): 1 − 7. doi: 10.13228/j.boyuan.issn0449-749x.20150322

    Zhang Chunxia, Wang Haifeng, Zhang Shourong, et al. Strategic study on green development of Chinese steel industry[J]. Iron & Steel, 2015, 50(10): 1 − 7. doi: 10.13228/j.boyuan.issn0449-749x.20150322
    宁静, 王敖, 苏杰, 等. W含量对新型超高强度钢热塑性的影响[J]. 锻压技术, 2020, 45(9): 181 − 186. doi: 10.13330/j.issn.1000-3940.2020.09.031

    Ning Jing, Wang Ao, Su Jie, et al. Influence of W content on thermoplasticity for new ultra-high strength steel[J]. Forging & Stamping Technology, 2020, 45(9): 181 − 186. doi: 10.13330/j.issn.1000-3940.2020.09.031
    安同邦, 魏金山, 单际国, 等. 保护气成分对 1000 MPa级高强熔敷金属组织特征的影响[J]. 金属学报, 2019, 55(5): 575 − 584. doi: 10.11900/0412.1961.2018.00375

    An Tongbang, Wei Jinshan, Shan Giguo, et al. Influence of shielding gas composition on microstructure characteristics of 1 000 MPa grade deposited metals[J]. Acta Metallurgica Sinica, 2019, 55(5): 575 − 584. doi: 10.11900/0412.1961.2018.00375
    高野, 任家宽, 李志峰, 等. 奥氏体化温度对900 MPa级HSLA钢显微组织和晶体学演变的影响[J]. 材料研究学报, 2022, 36(1): 21 − 28.

    Gao Ye, Ren Jiakuan, Li Zhifeng, et al. Effect of austenitizing temperature on microstructure and crystallographic evolution of 900 MPa grade HSLA steel[J]. Chinese Journal of Materials Research, 2022, 36(1): 21 − 28.
    Ishikawa N, Sueyoshi H, Endo S. Critical condition for hydrogen induced cold cracking of high strength weld metal[C]// 2014 10th International Pipeline Conference. American Society of Mechanical Engineers, 2014.
    安同邦, 单际国, 魏金山, 等. 热输入对 1000 MPa级工程机械用钢接头组织性能的影响[J]. 机械工程学报, 2014, 50(22): 42 − 49. doi: 10.3901/JME.2014.22.042

    An Tongbang, Shan Jiguo, Wei Jinshan, et al. Effect of heat input on microstructure and performance of welded joint in 1 000 MPa grade steel for construction machinery[J]. Journal of Mechanical Engineering, 2014, 50(22): 42 − 49. doi: 10.3901/JME.2014.22.042
    Wu X, Lin H, Luo W, et al. Microstructure and microhardness evolution of thermal simulated HAZ of Q & P980 steel[J]. Journal of Materials Research and Technology, 2021, 15: 6067 − 6078. doi: 10.1016/j.jmrt.2021.11.059
    蒋庆梅, 张小强, 陈礼清, 等. 1000 MPa 级超高强钢的 SH-CCT 曲线及其热影响区的组织和性能[J]. 钢铁研究学报, 2014, 26(1): 47 − 51.

    Jiang Qingmei, Zhang Xiaoqiang, Chen Liqing, et al. SH-CCT diagram, microstructure and properties of heat-affected zone in a 1 000 MPa grade extra high-strength steel[J]. Journal of Iron and Steel Research, 2014, 26(1): 47 − 51.
    方俊飞, 徐震霖, 斯松华, 等. 不同冷速下 Q1100 高强钢焊接热影响区粗晶区的组织转变特征[J]. 机械工程材料, 2017, 41(1): 107 − 110. doi: 10.11973/jxgccl201701022

    Fang Junfei, Xu Zhenlin, Si Songhua, et al. Microstructure transformation characteristic of CGHAZ of Q1100 high-strength steel at different cooling rates[J]. Materials for Mechanical Engineering, 2017, 41(1): 107 − 110. doi: 10.11973/jxgccl201701022
    Weglowski M S, Zeman M, Lomozik M. Physical simulation of weldability of weldox 1300 steel[J]. Materials Science Forum, 2013, 762: 551 − 555. doi: 10.4028/www.scientific.net/MSF.762.551
    Wang CH F, Wang M Q, Shi J, et al. Effect of microstructure refinement on the strength and toughness of low alloy martensitic steel[J]. Journal of Materials Science & Technology, 2007, 23(5): 659 − 664.
    Lei X, Dong S, Huang J, et al. Phase evolution and mechanical properties of coarse-grained heat affected zone of a Cu-free high strength low alloy hull structure steel[J]. Materials Science and Engineering A, 2018, 718: 437 − 448.
    邢淑清, 陆恒昌, 麻永林, 等. 800 MPa级高强钢焊接粗晶区再热循环的组织转变规律[J]. 材料工程, 2015, 43(7): 93 − 99.

    Xing Shuqing, Lu Hengchang, Ma Yonglin, et al. Microstructure evolution of CG-HAZ reheated by second thermal cycle for 800 MPa grade high strength steel[J]. Journal of Materials Engineering, 2015, 43(7): 93 − 99.
    Huda N, Wang Y, Li L, et al. Effect of martensite-austenite (MA) distribution on mechanical properties of inter-critical reheated coarse grain heat affected zone in X80 linepipe steel[J]. Materials Science and Engineering: A, 2019, 765: 138301. doi: 10.1016/j.msea.2019.138301
    Fan L, Zhou D, Wang T, et al. Tensile properties of an acicular ferrite and martensite/austenite constituent steel with varying cooling rates[J]. Materials Science & Engineering A, 2014, 590: 224 − 231.
    Wang C, Wu X, Jie L, et al. Transmission electron microscopy of martensite/austenite islands in pipeline steel X70[J]. Materials Science & Engineering A, 2006, 438(11): 267 − 271.
    Wang S C, Yang J R. Effects of chemical composition, rolling and cooling conditions on the amount of martensite/austenite (M/A) constituent formation in low carbon bainitic steels[J]. Materials Science and Engineering:A, 1992, 154(1): 43 − 49. doi: 10.1016/0921-5093(92)90361-4
    Kim H K, Moon J I, Kim W K, et al. Influence of carbon equivalent value on the weld bead bending properties of high-strength low-alloy steel plates[J]. Journal of Materials Science & Technology, 2016, 33(4): 321 − 329.
    Long X Y, Zhang F C, Yang Z N. Study on microstructures and properties of carbide-free and carbide-bearing bainitic steels[J]. Materials Science and Engineering: A, 2018(715): 10 − 16.
    王旭, 魏军, 仇圣桃, 等. 12Mn钢CCT曲线的测定与分析[J]. 热加工工艺, 2021, 50(4): 147 − 150.

    Wang Xu, Wei Jun, Chou Shengtao, et al. Measurement and analysis of CCT curve of 12Mn steel[J]. Hot Working Technology, 2021, 50(4): 147 − 150.
    Sa A, Vj B, Mav F, et al. Thermomechanical simulation of the heat-affected zones in welded ultra-high strength steels: Microstructure and mechanical properties[J]. Materials & Design, 2021, 213.
    刘旭辉, 张波, 肖爱达, 等. 工程机械用960QT钢焊接粗晶区组织及性能研究[J]. 特殊钢, 2019, 40(1): 63 − 67. doi: 10.3969/j.issn.1003-8620.2019.01.017

    Liu Xuhui, Zhang Bo, Xiao Aida, et al. Study on structure and performance of coarse grained heat affected zone(CGHAZ) of machinery steel 960QT[J]. Special Steel, 2019, 40(1): 63 − 67. doi: 10.3969/j.issn.1003-8620.2019.01.017
    张文钺. 焊接冶金学[M]. 北京: 机械工业出版社, 1999.

    Zhang Wenyue. Welding metallurgy[M]. Beijing: China Machine Press, 1999.
  • Related Articles

    [1]ZENG Daoping, ZHENG Shaoxian, AN Tongbang, DAI Haiyang, MA Chengyong. Study on microstructure and low-temperature impact toughness of deposited metal form covered electrodes for 440 MPa grade high-strength steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(3): 120-128. DOI: 10.12073/j.hjxb.20230318002
    [2]WANG Wei, TAN Caiwang, XU Liang, WANG Xuyou, LIN Shangyang. Laser cutting 30 mm steel plates under water of 50 m[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(1): 35-38.
    [3]LI Yifei, CAI Zhipeng, PAN Jiluan, LIU Xia, WANG Peng, HUO Xin, SHEN Hongwei. Research on toughness weak points of joints of NiCrMoV refractory steel for manufacturing steam turbine rotor[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(10): 73-76,80.
    [4]JIN Yuhua, WANG Xijing, LI Changfeng, ZHANG Jie. Study on tensile properties of friction-stir-welded joints of 2024-M aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (4): 69-72.
    [5]ZHANG Yingqiao, ZHANG Hanqian, LIU Weiming. Effects of M-A constituent on toughness of coarse grain heat-affected zone in HSLA steels for oil tanks[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (1): 109-112.
    [6]WANG Xue, CHANG Jianwei, HUANG Guanzheng, ZHANG Yinglin. Study on microstructure and properties of IRCGHAZ in WB36 steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (10): 29-32.
    [7]WANG Xue, CHANG Jianwei, CHEN Fangyu, QIU Minglin. Study on PWHT improving toughness at IRCGHAZ of WB36 steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (3): 9-12.
    [8]LI Ya-jiang, ZOU Zeng-da, WU Hui-qiang, WANG Juan. Microstructure and Performance in the Inter-critical Region of Heataffected Zone of HQ130 Steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2001, (2): 54-58.
    [9]Yang Yongxing, Kang Zhixin, Zhou Lixia, Cheng Hemin. Transformation Superplasticity in Welding CGHAZ and its Effect on Fatigue Life[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1996, (1): 49-55.
    [10]Yang Yongxing, Tong Yiangang, Liu Miaotao, Kang Zhixi. RELATIONSHIP BETWEEN THE TOUGHNESS AND FINE MICROSTRUCTURES OF M-A CONSTITUENTS IN RESTRAINED MULTIPASS TIG WELDED HAZS OF 15CrMoV BAINITIC STEEL[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1986, (4): 174-180.
  • Cited by

    Periodical cited type(6)

    1. 王程明,白丽娟,宋月,刘丽君,谷秀锐,李惠敏. 海洋平台用EH36钢的SHCCT曲线测定与分析. 金属热处理. 2025(01): 58-62 .
    2. 肖世俊,李霄,张正华,薛海洋. 长期服役15Cr1Mo1V补焊细晶区组织及硬度与冷却速度的关系. 焊接技术. 2025(03): 35-39+146 .
    3. 向婷,方振龙,马强,曹增奎,张健. 实-药芯多丝电弧复合焊中药芯焊丝位置对焊接稳定性的影响. 材料热处理学报. 2024(06): 193-201 .
    4. 张朋彦,张明,周磊磊,梁恩荣,朱志刚. 22MnB5和QStE550TM的异种钢接头碳迁移现象分析. 钢铁. 2024(10): 86-95 .
    5. 司广全,李太江,李巍,孙琦. 水电工程1000 MPa等级超高强钢埋弧自动焊接头显微组织及力学性能研究. 热力发电. 2024(11): 47-55 .
    6. 张奎良,李景,李海军,吴海龙,甘洪丰. 1000MPa级水电钢SH-CCT曲线测定与冷裂敏感性分析. 大电机技术. 2024(05): 81-87 .

    Other cited types(1)

Catalog

    Article views (218) PDF downloads (70) Cited by(7)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return