Advanced Search
WEN Xue, WANG Honghui, QIAN Jiankang, LU Yingmin, ZHENG Liang, LEI Zhenglong. Cold crack susceptibility analysis of the copper backing outside root welding joints of X80M pipeline steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(12): 105-112. DOI: 10.12073/j.hjxb.20220408001
Citation: WEN Xue, WANG Honghui, QIAN Jiankang, LU Yingmin, ZHENG Liang, LEI Zhenglong. Cold crack susceptibility analysis of the copper backing outside root welding joints of X80M pipeline steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(12): 105-112. DOI: 10.12073/j.hjxb.20220408001

Cold crack susceptibility analysis of the copper backing outside root welding joints of X80M pipeline steel

More Information
  • Received Date: April 07, 2022
  • Available Online: November 15, 2022
  • The cold crack sensitivity analysis of the copper backing outside root welding joints of X80M pipeline steel with large thickness and diameter under different assembly conditions was carried out. The effect of different assembly conditions on the cold cracking tendency of the joint was studied using the carbon equivalent method and stress field simulation. According to the results, the heat affected zone (HAZ) at the top cover layer and the root weld layer zone at the bottom of the X80M pipe steel weld joints are the weakest areas, which have the greatest cold crack tendency. When the butt gap is increased from 0 − 0.5 mm to 0.6 − 1 mm, the relative carbon equivalent of the root weld layer in the weld zone is also increased by 16.6%, which increases the cold cracking tendency. The increase in misalignment increases the hardenability of the heat affected zone of the joint cover layer and increases the susceptibility to cold cracking. The increase in the misalignment and the butt gap will lead to a further increase in the residual tensile stress after welding, and the increase in the misalignment will also lead to stress concentrations in the misalignment area of the joint, and the increase in the misalignment from 0 mm to 3 mm will result in a 52.4% increase in the peak residual stress at the concave corner of the root weld layer in the weld zone. Therefore, the X80M pipeline steel arc welding process needs to minimize the butt gap and the amount of misalignment to reduce the tendency of cold cracking.
  • 王炳英, 霍立兴, 张玉凤, 等. X80管线钢焊接接头的硫化氢应力腐蚀试验研究[J]. 压力容器, 2006, 23(7): 15 − 18. doi: 10.3969/j.issn.1001-4837.2006.07.004

    Wang Bingying, Huo Lixing, Zhang Yufeng, et al. H2S stress corrosion test of welded joint for X80 pipeline steel[J]. Pressure Vessel Technology, 2006, 23(7): 15 − 18. doi: 10.3969/j.issn.1001-4837.2006.07.004
    安琳, 徐学利. X80高强度管线钢的焊接性分析[J]. 石油矿场机械, 2008(6): 27 − 30. doi: 10.3969/j.issn.1001-3482.2008.06.008

    An Lin, Xu Xueli. Weldability analysis of X80 high strength pipeline steel[J]. Petroleum Field Machinery, 2008(6): 27 − 30. doi: 10.3969/j.issn.1001-3482.2008.06.008
    Zhao Xiaohui, Wang Hao, Liu Gen, et al. Research on the hydrogen assisted fatigue damage in X80 pipeline steel welded joint[J]. Materialstoday, 2022, 31: 103524.
    Kasuya T, Yurioka N. Determination of necessary preheat temperature to avoid cold cracking under varying ambient temperature[J]. ISIJ International, 1995, 35(10): 1183 − 1189. doi: 10.2355/isijinternational.35.1183
    Huang Zhijun, Hu Lunji, Miao Kai. Weldability and SAW welding wire of X80 pipeline steel[J]. China Welding, 2006, 15(1): 74 − 80.
    张文钺. 焊接冶金学 (基本原理) [M]. 北京: 机械工业出版社, 1999.

    Zhang Wenyue. Welding metallurgy: (basic principles) [M]. Beijing: China Machine Press, 1999.
    张勇, 孙琳琳, 綦秀玲. 曲面冲击头随焊冲击旋转挤压法控制40Cr钢冷裂纹[J]. 中国机械工程, 2017, 28(9): 1097 − 1100. doi: 10.3969/j.issn.1004-132X.2017.09.016

    Zhang Yong, Sun Linlin, Qi Xiuling. Research on preventing weld cold crack of 40Cr by impact revolution curved rod[J]. China Mechanical Engineering, 2017, 28(9): 1097 − 1100. doi: 10.3969/j.issn.1004-132X.2017.09.016
    尹长华, 薛振奎, 闫臣. Nb-Cr X80管线钢冷裂敏感性分析[J]. 焊管, 2010, 33(1): 13 − 17,20. doi: 10.3969/j.issn.1001-3938.2010.01.004

    Yin Zhanghua, Xue Zhenkui, Yan Chen. Cold cracking sensitivity analysis of Nb-Cr X80 grade pipeline steel[J]. Welded Pipe and Tube, 2010, 33(1): 13 − 17,20. doi: 10.3969/j.issn.1001-3938.2010.01.004
    汪宏辉, 董淑磊, 钱建康, 等. 预热及保温对严寒环境X80钢管道全自动外焊焊缝组织与性能的影响[J]. 中国机械工程, 2021, 32(6): 748 − 755. doi: 10.3969/j.issn.1004-132X.2021.06.016

    Wang Honghui, Dong Shulei, Qian Jiankang, et al. Effects of preheating and heat preservation on microstructure and properties of fully automatic external welding seams of X80 steel pipes in severe cold environment[J]. China Mechanical Engineering, 2021, 32(6): 748 − 755. doi: 10.3969/j.issn.1004-132X.2021.06.016
    Turichin G A, Kuznetsov M, Pozdnyako V A, et al. Influence of heat input and preheating on the cooling rate, microstructure and mechanical properties at the hybrid laser-arc welding of API 5L X80 steel[J]. Procedia CIRP, 2018, 74: 748 − 751. doi: 10.1016/j.procir.2018.08.018
    Cooper R, Silva J H F, Trevisan R E. Influence of preheating on API 5L-X80 pipeline joint welding with self-shielded flux-cored wire[J]. Welding International, 2005, 19(11): 882 − 887. doi: 10.1533/wint.2005.3494
    Yi H J, Lee Y J, Kim J Y, et al. Effect of microstructure and chemical composition on cold crack susceptibility of high-strength weld metal[J]. Journal of Mechanical Science and Technology, 2011, 25(9): 2185 − 2193. doi: 10.1007/s12206-011-0529-2
    张璐. X80钢混合气体保护焊焊接性及焊接工艺研究 [D]. 镇江: 江苏科技大学, 2014.

    Zhang Lu. The research on GMAW weldability and welding procedure of X80 steel[D]. Zhenjiang: Jiangsu University of Science and Technology, 2014.
    朱凤艳, 王琳, 张效铭, 等. 某X70管道环焊缝裂纹成因分析[J]. 热加工工艺, 2021, 50(17): 152 − 156.

    Zhu Fengyan, Wang Lin, Zhang Xiaoming, et al. Cause analysis of girth weld crack in a X70 pipeline[J]. Hot Working Technology, 2021, 50(17): 152 − 156.
    迟艳芬, 刘照元, 王振刚, 等. X70管线钢厚板多层多道焊残余应力数值分析[J]. 焊接, 2020(8): 9 − 15,61.

    Chi Yanfen, Liu Zhaoyuan, Wang Zhengang, et al. Numerical simulation of multi-pass and multi-layer welding residual stress of X70 steel thick plate[J]. Welding & Joining, 2020(8): 9 − 15,61.
    Lan L, Qiu C, Zhao D, et al. Microstructural characteristics and toughness of the simulated coarse grained heat affected zone of high strength low carbon bainitic steel[J]. Materials Science & Engineering A, 2011, 529: 192 − 200.
    You Y, Shang C, Nie W, et al. Investigation on the microstructure and toughness of coarse grained heat affected zone in X-100 multi-phase pipeline steel with high Nb content[J]. Materials Science & Engineering A, 2012, 558(15): 692 − 701.
    许宁, 王峰会, 罗金恒, 等. X80管线钢焊接接头TEM观察下的断裂行为对比[J]. 中国机械工程, 2016, 27(3): 403 − 407. doi: 10.3969/j.issn.1004-132X.2016.03.022

    Xu Ning, Wang Fenghui, Luo Jinheng, et al. Comparison of fracture behaviors of X80 pipeline steel welded joints under TEM observation[J]. China Mechanical Engineering, 2016, 27(3): 403 − 407. doi: 10.3969/j.issn.1004-132X.2016.03.022
    赵朋成, 刘佳奇, 胡艺腾, 等. 焊缝错位对X80钢管应力分布影响的数值预测[J]. 青岛科技大学学报(自然科学版), 2020, 41(2): 75 − 850.

    Zhao Pengcheng, Liu Jiaqi, Hu Yiteng, et al. Numerical prediction of the weld misalignment effect on stress distribution of X80 steel pipeline[J]. Journal of Qingdao University of Science and Technology (Natural Science Edition), 2020, 41(2): 75 − 850.
    Reddy G M, Mohandas T, Sarma D. Cold cracking studies on low alloy steel weldments: effect of filler metal composition[J]. Science and Technology of Welding and Joining, 2003, 8(6): 407 − 414. doi: 10.1179/136217103225005552
    刘成, 尹立孟, 姚宗湘, 等. 焊缝余高对复合型坡口X80管线钢多层多道焊接残余应力的影响[J]. 焊接学报, 2018, 39(12): 100 − 104. doi: 10.12073/j.hjxb.2018390306

    Liu Cheng, Yin Limeng, Yao Zongxiang, et al. Effect of weld reinforcement on residual stress of multi-layer and multi pass welding of compound groove X80 pipeline steel[J]. Transactions of the China Welding Institution, 2018, 39(12): 100 − 104. doi: 10.12073/j.hjxb.2018390306
    王炳英, 詹发福, 李慧玲, 等. 超声滚压加工对 X80管线钢焊接残余应力的影响[J]. 焊接学报, 2016, 37(12): 87 − 90.

    Wang Bingying, Zhan Fafu, Li Huiling, et al. Effect of ultrasonic rolling on welding residual stress of X80 pipeline steel[J]. Transactions of the China Welding Institution, 2016, 37(12): 87 − 90.
    李亚娟, 李午申. X80管线钢环焊缝接头残余应力的数值模拟[J]. 焊接学报, 2010, 31(6): 97 − 100.

    Li Yajuan, Li Wushen. Numerical simulation of residual stress in wire joint of X80 pipeline[J]. Transactions of the China Welding Institution, 2010, 31(6): 97 − 100.
    Efimenko L A, Elagina O Y, Kapustin O E, et al. Investigation of the weldability of high-strength pipe steels of X80 strength grade[J]. Welding International, 2010, 24(9): 714 − 717. doi: 10.1080/09507111003655606
    严春妍, 张浩, 朱子江, 等. X80管线钢多道激光-MIG复合焊残余应力分析[J]. 焊接学报, 2021, 42(9): 28 − 34,41. doi: 10.12073/j.hjxb.20210312001

    Yan Chunyan, Zhang Hao, Zhu Zijiang, et al. Residual stress analysis of multi pass laser MIG hybrid welding of X80 pipeline steel[J]. Transactions of the China Welding Institution, 2021, 42(9): 28 − 34,41. doi: 10.12073/j.hjxb.20210312001
    Jian W, Lu S, Li Y, et al. Cold cracking sensitivity of a newly developed 9Cr2WVTa steel[J]. Journal of Materials Engineering and Performance, 2016, 26(1): 1 − 10.
  • Related Articles

    [1]BAI Zijian, ZHANG Zhifen, WANG Jie, ZHANG Shuai, SU Yu, WEN Guangrui, CHEN Xuefeng. Dilution rate monitoring of DED based on a spectral physical feature perception network[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(11): 95-100. DOI: 10.12073/j.hjxb.20240701002
    [2]LONG Haiwei, ZHANG Jiaying, LIU Rui, SUN Yibo, WEI Xiao, YANG Xinhua. Online monitoring of dissimilar material FSW based on SSTFT and KSVD[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(11): 77-84. DOI: 10.12073/j.hjxb.20240716002
    [3]BAI Zijian, LI Zhiwen, ZHANG Zhifen, QIN Rui, ZHANG Shuai, XU Yaowen, WEN Guangrui. On-line monitoring of TIG welding quality of nuclear power plug tube based on arc spectrum[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(5): 8-19. DOI: 10.12073/j.hjxb.20230610002
    [4]XU Donghui, MENG Fanpeng, SUN Peng, ZHENG Xuchen, CHENG Yongchao, MA Zhi, CHEN Shujun. Online monitoring of GMAW welding defect based on deep learning[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(3): 114-119. DOI: 10.12073/j.hjxb.20230117002
    [5]LIU Qiang, ZHAO Libin, CHI Dazhao. Ultrasonic Lamb wave detection of defects in thin-walled cross laser welding structure[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(10): 40-43. DOI: 10.12073/j.hjxb.20210123001
    [6]GAO Liwen, XUE Jiaxiang, CHEN Hui, WANG Ruichao, LIN Fang. Adaptive online detection on dynamic characteristics of arc welding power supply based on complicated dimensionality reduction of correlation and time consumption[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (4): 17-20.
    [7]ZHAO Xin, QIAN Chang-ming, CHEN Guan-long, ZHANG Yan-song. Ultrasonic fast identification for faulty welded joint defects of auto-body spot welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (11): 17-20.
    [8]LI Di, SONG Zhu-mei, YE Feng. On-line monitoring of gas metal arc welding defects based on independent component analysis[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (3): 44-48.
    [9]ZENG An, LI Di, PAN Dan, YE Feng. ON line monitoring platform of GMAW based on MSPC[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2003, (1): 5-8.
    [10]ZHOU Zheng-gan, TENG Sheng-hua, JIANG Wei, LI He-ping. Research on Defect Detection and Evaluation in WeldS with X-Rays[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2002, (3): 85-88.
  • Cited by

    Periodical cited type(3)

    1. 胡岭,余丁坤,卜永周,罗庆澄,薛松柏. Sn和Ce元素复合添加对BAg5CuZn钎料钎缝组织与性能影响. 焊接学报. 2024(04): 101-108+135 . 本站查看
    2. 汪小钰,王轶,操齐高,孟晗琪,郑晶,苏瑾,胡建华,张志霄. 熔炼气雾化制备钴基粉末钎料在GH4169合金钎焊中应用. 电焊机. 2024(05): 46-51 .
    3. 李淳,陈雷,司晓庆,亓钧雷,曹健. 陶瓷-金属接头残余应力调控研究综述. 机械工程学报. 2024(22): 21-39 .

    Other cited types(1)

Catalog

    Article views (322) PDF downloads (85) Cited by(4)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return