Advanced Search
GE Yaqiong, LI Jipeng, CHANG Zexin, MA Mingfeng, HOU Qingling. Numerical simulation of laid powder based on selective laser melting[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(1): 93-98. DOI: 10.12073/j.hjxb.20220212001
Citation: GE Yaqiong, LI Jipeng, CHANG Zexin, MA Mingfeng, HOU Qingling. Numerical simulation of laid powder based on selective laser melting[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(1): 93-98. DOI: 10.12073/j.hjxb.20220212001

Numerical simulation of laid powder based on selective laser melting

More Information
  • Received Date: February 11, 2022
  • Available Online: December 14, 2022
  • In laser selective melting, the forming of powder bed will significantly affect the subsequent process and the quality of final products. In this paper, the dynamic numerical simulation of powder spreading behavior and forming quality in SLM forming process is carried out by using discrete element method (DEM). The influencing factors of powder bed quality are studied from two aspects of density and uniformity. The results show that the effect of powder spreading speed on the quality of powder bed is obvious. The powder spreading speed, powder spreading angle, scraper clearance height and powder particle size all have an important influence on improving the average density and uniformity of the powder bed. The lower the powder spreading speed, the higher the quality of powder bed and the lower the working efficiency. With the increase of the clearance height of the scraper, the density of the powder bed increases and the uniformity of the powder bed decreases to a lower value. The density of powder bed increases with the increase of powder laying angle, and then decreases. The structural uniformity of the whole powder bed also has a similar change trend. Increasing the particle size of powder will reduce the density of powder bed and the uniformity of powder bed structure. The powder spreading speed is 0.1 m/s, the clearance height of scraper is 90 μm. The powder spreading angle is 15°, and the powder particle size is 15 μm, the powder bed forming quality is the best. The research results of this paper will provide a valuable reference for the formation of high-quality powder bed in SLM process.
  • Zhang X C, Wang JW, Kang J W, et al. The dynamic arch bending mechanism of flat bridge structure of AlSi10Mg during SLM process[J]. Materials & Design, 2020, 188: 108469.
    Attar H, Ehtemam-Haghighi S, Kent D, et al. Recent developments and opportunities in additive manufacturing of titanium-based matrix composites: a review[J]. International Journal of Machine Tools & Manufacture: Design, research and application, 2018, 133: 85 − 102.
    Yang W L, He X J, Li H P, et al. A tribological investigation of SLM fabricated TC4 titanium alloy with carburization pretreatment[J]. Ceramics International, 2020, 46: 3043 − 3050. doi: 10.1016/j.ceramint.2019.10.004
    Fouda Y M, Bayly A E. A DEM study of powder spreading in additive layer manufacturing[J]. Granul. Matter, 2019, 22: 1 − 18.
    丁宏德, 朱春明, 唐斌, 等. 316L不锈钢SLM件与锻件的激光焊接头微观组织与性能[J]. 焊接, 2021(5): 9 − 14.

    Ding Hongde, Zhu Chunming, Tang Bin, et al. Microstructure and properties of laser welded joint between 316L stainless steel SLMed and forged parts[J]. Welding & Joining, 2021(5): 9 − 14.
    王凯, 焦向东, 朱加雷, 等. 激光功率密度对SLM成形TC4磨损性能的影响[J]. 焊接学报, 2020, 41(5): 61 − 64.

    Wang Kai, Jiao Xiangdong, Zhu Jialei, et al. Effect of laser power density on wear resistance of TC4 alloy manufactured by SLM[J]. Transactions of The China Welding Institution, 2020, 41(5): 61 − 64.
    杨立军, 燕珂, 邓亚辉, 等. 激光选区熔化TC4钛合金工艺参数对成形件表面质量的影响[J]. 应用激光, 2022, 42(5): 43 − 50.

    Yang Lijun, Yan Ke, Deng Yahui, et al. Effect of Process Parameters on Surface Quality of TC4 Alloy by Laser Selective Melting[J]. Applied Laser, 2022, 42(5): 43 − 50.
    Haeri S, Wang Y, Ghita O, et al. Discrete element simulation and experimental study of powder spreading process in additive manufacturing[J]. Powder Technology, 2017, 306: 45 − 54.
    Partel E J Ri, oschel T P. Particle-based simulation of powder application in additive manufacturing[J]. Powder Technology, 2016, 288: 96 − 102.
    Han Q Q, Gu H, Setchi R. Discrete element simulation of powder layer thickness in laser additive manufacturing[J]. Powder Technology, 2019, 352: 91 − 102.
    Nan W G, Pasha M, Bonakdar T, et al. Jamming during particle spreading in additive manufacturing[J]. Powder Technology, 2018, 338: 253 − 262. doi: 10.1016/j.powtec.2018.07.030
    Estupinan Donoso A A , Computational study of the industrial synthesis of tungsten powders[J]. Powder Technology, 2019, 344: 773–783.
    Chen H, Wei Q S, Wen S F, et al. Flow behavior of powder particles in layering process of selective laser melting: numerical modeling and experimental verification based on discrete element method[J]. International Journal of Machine Tools and Manufacture, 2017, 123: 146 − 159. doi: 10.1016/j.ijmachtools.2017.08.004
    Ma Y F, Evans T M, Philips N, et al. Numerical simulation of the effect of fine fraction on the flowability of powders in additive manufacturing[J]. Powder Technology, 2020, 360: 608 − 621. doi: 10.1016/j.powtec.2019.10.041
    Haeri S. Optimisation of blade type spreaders for powder bed preparation in additive manufacturing using DEM simulations[J]. Powder Technology, 2017, 321: 94 − 104. doi: 10.1016/j.powtec.2017.08.011
    Wang L, Li E L, Shen H, et al. Adhesion effects on spreading of metal powders in selective laser melting[J]. Powder Technology, 2020, 363: 602 − 610. doi: 10.1016/j.powtec.2019.12.048
    Gou D Z, An X Z, Zhao H Y, et al. Dynamic characteristics of binary sphere mixtures under air impact[J]. Powder Technology, 2018, 332: 224 − 233. doi: 10.1016/j.powtec.2018.03.065
    Qian Q, An X Z, Zhao H Y, et al. Particle scale study on the crystallization of mono-sized cylindrical particles subject to vibration[J]. Powder Technology, 2019, 352: 470 − 477. doi: 10.1016/j.powtec.2019.05.002
    Yang R Y, Zou R P, Yu A B. Computer simulation of the packing of fine particles[J]. Physical review A, Atomic, molecular, and optical physics, 2000, 62: 3900 − 3908.
    Nan W G, Pasha M, Ghadiri M. Numerical simulation of particle flow and segregation during roller spreading process in additive manufacturing[J]. Powder Technology, 2020, 364: 811 − 821. doi: 10.1016/j.powtec.2019.12.023
    Chen H, Wei Q S, Zhang Y J, et al. Powder-spreading mechanisms in powder-bed-based additive manufacturing: experiments and computational modeling[J]. Acta Materialia, 2019, 179: 158 − 171. doi: 10.1016/j.actamat.2019.08.030
    Meier C, Weissbach R, Weinberg J, et al. Critical influences of particle size and adhesion on the powder layer uniformity in metal additive manufacturing[J]. Journal of Materials Processing Technology, 2019, 266: 484 − 501. doi: 10.1016/j.jmatprotec.2018.10.037
  • Related Articles

    [1]ZHAO Qiu, TANG Kun, LI Yinghao, WU Weiqing. Fatigue crack initiation simulation of weld toe based on the Roe-Siegmund cyclic cohesive zone model[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(3): 61-67. DOI: 10.12073/j.hjxb.20230317003
    [2]DENG Caiyan, LIU Geng, GONG Baoming, LIU Yong. Fatigue crack initiation life prediction based on Tanaka-Mura dislocation model[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(1): 30-37. DOI: 10.12073/j.hjxb.20200706003
    [3]FU Lei, SHAN Long, WEN Yushuang, WANG Ping, FANG Hongyuan. Characterization of hydrogen gas pressure inner hydrogen induced crack cavity using fracture mechanics theory and finite element method[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(11): 8-12. DOI: 10.12073/j.hjxb.2019400280
    [4]JING Hongyang<sup>1,2</sup>, XU Jingjing<sup>1,2</sup>, XU Lianyong<sup>1,2</sup>, HAN Yongdian<sup>1,2</sup>, ZHAO Lei<sup>1,2</sup>. Finite element simulation of the restraint intensity of rigid butt-jointed cracking specimen and VRC specimen[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(8): 1-5. DOI: 10.12073/j.hjxb.2018390190
    [5]XING Jie1, HAN Yongdian1,2, XU Lianyong1,2, JING Hongyang2, LI Congcheng1, Zhao Lei2. High cycle and low cycle hybrid fatigue damage based on continuum damage mechanics[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(7): 63-66. DOI: 10.12073/j.hjxb.20150708001
    [6]ZHANG Wen, JING Hongyang, XU Lianyong, ZHAO Lei, HAN Yongdian. Prediction of creep crack initiation time in steel pipes with embedded spherical defects[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(2): 75-78.
    [7]WANG Shang, TIAN Yanhong, HAN Chun, LIU YangZhi. Effect of temperature distribution of CBGA components on fatigue life of solder joint by FEA[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(11): 113-118.
    [8]LI Congcheng, JING Hongyang, XU Lianyong, HAN Yongdian, ZHANG Wen. Numerical simulation of crack initiation under creep-fatigue interaction in P92 steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(8): 5-8.
    [9]TONG Chuan, ZENG Shengkui, CHEN Yunxia. Finite element analysis simulations of life prediction for PBGA soldered joints under thermal cycling[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (10): 89-92.
    [10]Ren Zhenan, Zhou Zhenfeng, Sun Daqian. Dynamic observation of cold crack initiation and propagation in SG cast iron weld[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1993, (3): 172-178.
  • Cited by

    Periodical cited type(2)

    1. 张超,周猛兵,崔雷,陶欣,王军,王伟,刘永长. 9Cr-1.5W-0.15Ta耐热钢搅拌摩擦焊焊缝组织和冲击性能分析. 焊接学报. 2024(04): 36-42+131 . 本站查看
    2. 王猛,张立平,赵琳瑜,吴军,熊然,蒙永胜,李军红. 增材制造和锻造TC11钛合金激光焊接头组织与力学性能. 焊接学报. 2023(10): 102-110+138-139 . 本站查看

    Other cited types(1)

Catalog

    Article views (369) PDF downloads (65) Cited by(3)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return