Citation: | GE Yaqiong, LI Jipeng, CHANG Zexin, MA Mingfeng, HOU Qingling. Numerical simulation of laid powder based on selective laser melting[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(1): 93-98. DOI: 10.12073/j.hjxb.20220212001 |
Zhang X C, Wang JW, Kang J W, et al. The dynamic arch bending mechanism of flat bridge structure of AlSi10Mg during SLM process[J]. Materials & Design, 2020, 188: 108469.
|
Attar H, Ehtemam-Haghighi S, Kent D, et al. Recent developments and opportunities in additive manufacturing of titanium-based matrix composites: a review[J]. International Journal of Machine Tools & Manufacture: Design, research and application, 2018, 133: 85 − 102.
|
Yang W L, He X J, Li H P, et al. A tribological investigation of SLM fabricated TC4 titanium alloy with carburization pretreatment[J]. Ceramics International, 2020, 46: 3043 − 3050. doi: 10.1016/j.ceramint.2019.10.004
|
Fouda Y M, Bayly A E. A DEM study of powder spreading in additive layer manufacturing[J]. Granul. Matter, 2019, 22: 1 − 18.
|
丁宏德, 朱春明, 唐斌, 等. 316L不锈钢SLM件与锻件的激光焊接头微观组织与性能[J]. 焊接, 2021(5): 9 − 14.
Ding Hongde, Zhu Chunming, Tang Bin, et al. Microstructure and properties of laser welded joint between 316L stainless steel SLMed and forged parts[J]. Welding & Joining, 2021(5): 9 − 14.
|
王凯, 焦向东, 朱加雷, 等. 激光功率密度对SLM成形TC4磨损性能的影响[J]. 焊接学报, 2020, 41(5): 61 − 64.
Wang Kai, Jiao Xiangdong, Zhu Jialei, et al. Effect of laser power density on wear resistance of TC4 alloy manufactured by SLM[J]. Transactions of The China Welding Institution, 2020, 41(5): 61 − 64.
|
杨立军, 燕珂, 邓亚辉, 等. 激光选区熔化TC4钛合金工艺参数对成形件表面质量的影响[J]. 应用激光, 2022, 42(5): 43 − 50.
Yang Lijun, Yan Ke, Deng Yahui, et al. Effect of Process Parameters on Surface Quality of TC4 Alloy by Laser Selective Melting[J]. Applied Laser, 2022, 42(5): 43 − 50.
|
Haeri S, Wang Y, Ghita O, et al. Discrete element simulation and experimental study of powder spreading process in additive manufacturing[J]. Powder Technology, 2017, 306: 45 − 54.
|
Partel E J Ri, oschel T P. Particle-based simulation of powder application in additive manufacturing[J]. Powder Technology, 2016, 288: 96 − 102.
|
Han Q Q, Gu H, Setchi R. Discrete element simulation of powder layer thickness in laser additive manufacturing[J]. Powder Technology, 2019, 352: 91 − 102.
|
Nan W G, Pasha M, Bonakdar T, et al. Jamming during particle spreading in additive manufacturing[J]. Powder Technology, 2018, 338: 253 − 262. doi: 10.1016/j.powtec.2018.07.030
|
Estupinan Donoso A A , Computational study of the industrial synthesis of tungsten powders[J]. Powder Technology, 2019, 344: 773–783.
|
Chen H, Wei Q S, Wen S F, et al. Flow behavior of powder particles in layering process of selective laser melting: numerical modeling and experimental verification based on discrete element method[J]. International Journal of Machine Tools and Manufacture, 2017, 123: 146 − 159. doi: 10.1016/j.ijmachtools.2017.08.004
|
Ma Y F, Evans T M, Philips N, et al. Numerical simulation of the effect of fine fraction on the flowability of powders in additive manufacturing[J]. Powder Technology, 2020, 360: 608 − 621. doi: 10.1016/j.powtec.2019.10.041
|
Haeri S. Optimisation of blade type spreaders for powder bed preparation in additive manufacturing using DEM simulations[J]. Powder Technology, 2017, 321: 94 − 104. doi: 10.1016/j.powtec.2017.08.011
|
Wang L, Li E L, Shen H, et al. Adhesion effects on spreading of metal powders in selective laser melting[J]. Powder Technology, 2020, 363: 602 − 610. doi: 10.1016/j.powtec.2019.12.048
|
Gou D Z, An X Z, Zhao H Y, et al. Dynamic characteristics of binary sphere mixtures under air impact[J]. Powder Technology, 2018, 332: 224 − 233. doi: 10.1016/j.powtec.2018.03.065
|
Qian Q, An X Z, Zhao H Y, et al. Particle scale study on the crystallization of mono-sized cylindrical particles subject to vibration[J]. Powder Technology, 2019, 352: 470 − 477. doi: 10.1016/j.powtec.2019.05.002
|
Yang R Y, Zou R P, Yu A B. Computer simulation of the packing of fine particles[J]. Physical review A, Atomic, molecular, and optical physics, 2000, 62: 3900 − 3908.
|
Nan W G, Pasha M, Ghadiri M. Numerical simulation of particle flow and segregation during roller spreading process in additive manufacturing[J]. Powder Technology, 2020, 364: 811 − 821. doi: 10.1016/j.powtec.2019.12.023
|
Chen H, Wei Q S, Zhang Y J, et al. Powder-spreading mechanisms in powder-bed-based additive manufacturing: experiments and computational modeling[J]. Acta Materialia, 2019, 179: 158 − 171. doi: 10.1016/j.actamat.2019.08.030
|
Meier C, Weissbach R, Weinberg J, et al. Critical influences of particle size and adhesion on the powder layer uniformity in metal additive manufacturing[J]. Journal of Materials Processing Technology, 2019, 266: 484 − 501. doi: 10.1016/j.jmatprotec.2018.10.037
|
[1] | ZHAO Qiu, TANG Kun, LI Yinghao, WU Weiqing. Fatigue crack initiation simulation of weld toe based on the Roe-Siegmund cyclic cohesive zone model[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(3): 61-67. DOI: 10.12073/j.hjxb.20230317003 |
[2] | DENG Caiyan, LIU Geng, GONG Baoming, LIU Yong. Fatigue crack initiation life prediction based on Tanaka-Mura dislocation model[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(1): 30-37. DOI: 10.12073/j.hjxb.20200706003 |
[3] | FU Lei, SHAN Long, WEN Yushuang, WANG Ping, FANG Hongyuan. Characterization of hydrogen gas pressure inner hydrogen induced crack cavity using fracture mechanics theory and finite element method[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(11): 8-12. DOI: 10.12073/j.hjxb.2019400280 |
[4] | JING Hongyang<sup>1,2</sup>, XU Jingjing<sup>1,2</sup>, XU Lianyong<sup>1,2</sup>, HAN Yongdian<sup>1,2</sup>, ZHAO Lei<sup>1,2</sup>. Finite element simulation of the restraint intensity of rigid butt-jointed cracking specimen and VRC specimen[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(8): 1-5. DOI: 10.12073/j.hjxb.2018390190 |
[5] | XING Jie1, HAN Yongdian1,2, XU Lianyong1,2, JING Hongyang2, LI Congcheng1, Zhao Lei2. High cycle and low cycle hybrid fatigue damage based on continuum damage mechanics[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(7): 63-66. DOI: 10.12073/j.hjxb.20150708001 |
[6] | ZHANG Wen, JING Hongyang, XU Lianyong, ZHAO Lei, HAN Yongdian. Prediction of creep crack initiation time in steel pipes with embedded spherical defects[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(2): 75-78. |
[7] | WANG Shang, TIAN Yanhong, HAN Chun, LIU YangZhi. Effect of temperature distribution of CBGA components on fatigue life of solder joint by FEA[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(11): 113-118. |
[8] | LI Congcheng, JING Hongyang, XU Lianyong, HAN Yongdian, ZHANG Wen. Numerical simulation of crack initiation under creep-fatigue interaction in P92 steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(8): 5-8. |
[9] | TONG Chuan, ZENG Shengkui, CHEN Yunxia. Finite element analysis simulations of life prediction for PBGA soldered joints under thermal cycling[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (10): 89-92. |
[10] | Ren Zhenan, Zhou Zhenfeng, Sun Daqian. Dynamic observation of cold crack initiation and propagation in SG cast iron weld[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1993, (3): 172-178. |
1. |
张超,周猛兵,崔雷,陶欣,王军,王伟,刘永长. 9Cr-1.5W-0.15Ta耐热钢搅拌摩擦焊焊缝组织和冲击性能分析. 焊接学报. 2024(04): 36-42+131 .
![]() | |
2. |
王猛,张立平,赵琳瑜,吴军,熊然,蒙永胜,李军红. 增材制造和锻造TC11钛合金激光焊接头组织与力学性能. 焊接学报. 2023(10): 102-110+138-139 .
![]() |