Advanced Search
MIAO Guanghong, HU Yu, AI Jiuying, MA Qiuyue, SUN Zhihao, MA Honghao, SHEN Zhaowu. Numerical simulation of explosive welding of metal tube and rod based on different algorithms[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(12): 64-71. DOI: 10.12073/j.hjxb.20211219002
Citation: MIAO Guanghong, HU Yu, AI Jiuying, MA Qiuyue, SUN Zhihao, MA Honghao, SHEN Zhaowu. Numerical simulation of explosive welding of metal tube and rod based on different algorithms[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(12): 64-71. DOI: 10.12073/j.hjxb.20211219002

Numerical simulation of explosive welding of metal tube and rod based on different algorithms

More Information
  • Received Date: December 18, 2021
  • Available Online: April 27, 2022
  • The 1060 aluminum tube/T2 copper rod are selected as the explosive composite rod preparation materials, and the T2 copper tube/Q235 steel tube are selected as the explosive composite pipe preparation materials. Using ANSYS/LS-DYNA software and combining the three algorithms of Lagrangian algorithm, ALE algorithm and SPH-FEM coupling algorithm, the numerical simulation of the explosive welding experiment of preparing two groups of explosive composite pipe and rod at one time is carried out. The simulation results show that the early modeling of Lagrange algorithm is the most concise, followed by the ALE algorithm. In the simulation process, SPH-FEM coupling algorithm takes the most time, and ALE algorithm takes the shortest time. The error between the collision velocity measured by the three algorithms and the theoretical calculation value is 0.9% − 5.3%. The error of SPH-EFM coupling algorithm is the smallest, and the error of Lagrange algorithm is the largest. The principle of energy accumulation inside the tubes is used to explain the diameter expansion of the external composite pipe during the welding process, and the pressure distribution at the composite interface of T2 copper tube/Q235 steel tube is used to verify this phenomenon.
  • Mendes R, Ribeiro J, Loureiro A. Effect of explosive characteristics on the explosive welding of stainless steel to carbon steel in cylindrical configuration[J]. Materials & Design, 2013, 51: 182 − 192.
    缪广红, 艾九英, 马雷鸣,等. 不锈钢/普碳钢双面爆炸复合的数值模拟[J]. 焊接学报, 2020, 41(8): 55 − 62.

    Miao Guanghong, Ai Jiuying, Ma Leiming, et al. Numerical simulation of double-sided explosive welding of stainless steel/ordinary carbon steel[J]. Transactions of the China Welding Institution, 2020, 41(8): 55 − 62.
    曹建斌, 张周锁. 双金属复合管水下爆炸成形有限元分析[J]. 焊接学报, 2018, 39(2): 61 − 65.

    Cao Jianbin, Zhang Zhousuo. Finite element analysis of underwater explosive forming of bimetal composite pipe[J]. Transactions of the China Welding Institution, 2018, 39(2): 61 − 65.
    Mali V I, Bataev A A, Maliutina I N, et al. Microstructure and mechanical properties of Ti/Ta/Cu/Ni alloy laminate composite materials produced by explosive welding[J]. International Journal of Advanced Manufacturing Technology, 2017, 93(9-12): 4285 − 4294. doi: 10.1007/s00170-017-0887-8
    邓伟, 陆明, 田晓洁. 铝/钛复合管爆炸焊接三维数值模拟[J]. 焊接学报, 2014, 35(12): 63 − 66.

    Deng Wei, Lu Ming, Tian Xiaojie. 3D numerical simulation on explosive welding of Al /Ti composite tube[J]. Transactions of the China Welding Institution, 2014, 35(12): 63 − 66.
    Wu X M, Shi C G, Fang Z H, et al. Comparative study on welding energy and interface characteristics of titanium-aluminum explosive composites with and without interlayer[J]. Materials & Design, 2021, 197: 109279.
    Yang M, Xu J F, Ma H H, et al. Microstructure development during explosive welding of metal foil: morphologies, mechanical behaviors and mechanisms[J]. Composites Part B Engineering, 2021(1): 108685.
    Liu W D, Liu K X, Cheng Q Y, et al. Metallic glass coating on metals plate by adjusted explosive welding technique[J]. Applied Surface Science, 2009, 255(23): 9343 − 9347. doi: 10.1016/j.apsusc.2009.07.033
    乐莉, 闫军, 钟秋海. 超高速撞击仿真算法分析[J]. 系统仿真学报, 2004, 16(9): 1941 − 1943. doi: 10.3969/j.issn.1004-731X.2004.09.025

    Yue Li, Yan Jun, Zhong Qiuhai. Simulations of debris impacts using three different algorithms[J]. Journal of System Simulation, 2004, 16(9): 1941 − 1943. doi: 10.3969/j.issn.1004-731X.2004.09.025
    Belytschko T, Liu W K, Moran B. Nonlinear finite elements for continua and structures[M]. New York: John Wiley and Sons, 2000.
    张志春, 强洪夫, 高巍然. SPH-FEM接触算法在冲击动力学数值计算中的应用[J]. 固体力学学报, 2011, 32(3): 319 − 324.

    Zhang Zhichun, Qiang Hongfu, Gao Weiran. Application of SPH-FEM contact algorithm in impact dynamics simulation[J]. Chinese Journal of Solid Mechanics, 2011, 32(3): 319 − 324.
    Zhou Guoan, Xu Junfeng, Shen Zhaowu, et al. Microstructure and mechanical properties of simultaneously explosively-welded steel/Cu pipes and Al/Cu pipe/rod[J]. Journal of Manufacturing Processes, 2019, 47: 244 − 253.
    李裕春, 时党勇, 赵远. ANSYS11.0/LS-DYNA基础理论与工程实践[M]. 北京: 中国水利水电出版社, 2008.

    Li Yuchun, Shi Dangyong, Zhao Yuan. ANSYS11.0/LS-DYNA basic theory and engineering practice[M]. Beijing: China Water & Power Press, 2008.
    章冠人, 陈大年. 凝聚炸药起爆动力学[M]. 北京: 国防工业出版社, 1991.

    Zhang Guanren, Chen Danian. Condensed explosive detonation dynamics[M]. Beijing: National Defense Industry Press, 1991.
    辛春亮, 薛再清, 涂建, 等. 有限元分析常用材料参数手册[M]. 北京: 机械工业出版社, 2019.

    Xin Chunliang, Xue Zaiqing, Tu Jian, et al. Handbook of common material parameters for finite element analysis[M]. Beijing: China Machine Press, 2019.
    白金泽. LS-DYNA 3D理论基础与实例分析[M]. 北京: 科学出版社, 2005.

    Bai Jinze. Theoretical basis and case analysis of LS-DYNA 3D[M]. Beijing: Science Press, 2005.
    张红松, 胡仁喜, 康士廷. ANSYS14.5/LS-DYNA非线性有限元分析实例指导教程[M]. 北京: 机械工业出版社, 2013.

    Zhang Hongsong, Hu Renxi, Kang Shiting. ANSYS14.5/LS-DYNA nonlinear finite element analysis example guidance course[M]. Beijing: China Machine Press, 2013.
    Wang J. Simulation of landmine explosion using LS-DYNA 3D software: benchmark work of simulation of explosion in soil and air[M]. Victoria: DSTO Aeronautical and Maritime Research Laboratory, 2001.
    李利莎, 谢清粮, 郑全平, 等. 基于Lagrange、ALE和SPH算法的接触爆炸模拟计算[J]. 爆破, 2011, 28(1): 18 − 27. doi: 10.3963/j.issn.1001-487X.2011.01.005

    Li Lisha, Xie Qingliang, Zheng Quanping, et al. Numerical simulation of contact explosion based on Lagrange, ALE and SPH[J]. Blasting, 2011, 28(1): 18 − 27. doi: 10.3963/j.issn.1001-487X.2011.01.005
    杨扬. 金属爆炸复合技术与物理冶金[M]. 北京: 化学工业出版社, 2005.

    Yang Yang. Metal explosion composite technology and physical metallurgy[M]. Beijing: Chemical Industry Press, 2005.
    郑远谋. 爆炸焊接和爆炸复合材料[M]. 北京: 国防工业出版社, 2017.

    Zheng Yuanmou. Explosive welding and explosive composite material[M]. Beijing: National Defense Industry Press, 2017.
  • Related Articles

    [1]XU Nan, XU Yuzhui, GAO Tianxu, SONG Qining, BAO Yefeng. The influence of welding thermal cycle on the grain structure of friction stir welded 5083 aluminum alloy joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION. DOI: 10.12073/j.hjxb.20240315001
    [2]XIAO Wenbo, HE Yinshui, YUAN Haitao, MA Guohong. Synchronous real-time detection of weld bead geometry and the welding torch in galvanized steel GAMW[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(12): 78-82. DOI: 10.12073/j.hjxb.20201021001
    [3]CUI Bing1,2, PENG Yun2, PENG Mengdu2, AN Tongbang2. Effects of weld thermal cycle on microstructure and properties of heataffected zone of Q890 processed steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(7): 35-39. DOI: 10.12073/j.hjxb.20150427004
    [4]LIU Haodong, HU Fangyou, CUI Aiyong, LI Hongbo, HUANG Fei. Experimental on thermal cycle of laser welding with ultrasonic processing across different phases[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(8): 13-17.
    [5]LÜ Xiaochun, HE Peng, QIN Jian, DU Bing, HU Zhongquan. Effect of welding thermal cycle on microstructure and properties of intercritically reheated coarse grained heat affected zone in SA508-3 steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(12): 47-49.
    [6]WU Dong, LU Shanping, LI Dianzhong. Effect of welding thermal cycle on high temperature mechanical property of Ni-Fe base superalloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(9): 69-72.
    [7]HU Yanhua, CHEN Furong, XIE Ruijun, LI Haitao. Designment of test program system for welding thermal cycle in weld zone[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (5): 93-96.
    [8]HU Yanhua, CHEN Furong, XIE Ruijun, LI Haitao. In-situ detection of weld metal thermal cycle of 10CrMo910 steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (10): 105-107.
    [9]CHEN Yu-hua, WANG Yong. Numerical simulation of thermal cycle of in-service welding onto active pipeline based on SYSWELD[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (1): 85-88.
    [10]YAO Shang-wei, ZHAO Lu-yu, XU Ke, WANG Ren-fu. Effect of welding thermal cycle on toughness of continuous cast-ing steel center[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (10): 97-100.
  • Cited by

    Periodical cited type(1)

    1. 温淳杰,姚屏,范谨锐,曾祥坤,喻小燕,武威. 316L不锈钢和镍基合金梯度材料MIG焊电弧增材制造工艺研究. 精密成形工程. 2024(10): 208-216 .

    Other cited types(1)

Catalog

    Article views (479) PDF downloads (101) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return