Advanced Search
LI Lupeng, ZHANG Gang, ZHU Zhenwen, REN Ziyou, SHI Yu, FAN Ding. Effect of wire feeding mode on additive forming precision of double-pulsed TIG process with stepped filling wire[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(9): 31-37. DOI: 10.12073/j.hjxb.20211207004
Citation: LI Lupeng, ZHANG Gang, ZHU Zhenwen, REN Ziyou, SHI Yu, FAN Ding. Effect of wire feeding mode on additive forming precision of double-pulsed TIG process with stepped filling wire[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(9): 31-37. DOI: 10.12073/j.hjxb.20211207004

Effect of wire feeding mode on additive forming precision of double-pulsed TIG process with stepped filling wire

More Information
  • Received Date: December 06, 2021
  • Available Online: September 01, 2022
  • To resolve the main issues of wire arc additive manufacturing, including the unstable heat and mass transfer, strong arc coupling and poor formation etc., a double-pulsed tungsten inert gas (TIG) with stepped filling wire additive manufacturing method was proposed. A series of deposited straight wall experiments with variable parameters were carried out. The image and thermal data of the droplet and weld pool surface were sampled simultaneously during the deposition process. The influence of wire feeding mode on the welding wire melting, droplet transition and molten pool behavior as well as the causes of the influence on the forming accuracy were analyzed in detail. The results show that the droplet transfer mode is the liquid bridge transfer in both the rear and lead wire feeding modes. Compared with the lead wire feeding process, in the rear wire feeding condition, the wire melting efficiency increases, the droplet transfer size decreases, the change of the molten pool height and width decreases, and the thermal stability is enhanced.The volume of molten pool is slightly increased by high-frequency pulsed arc. The straight wall deposition parts with high forming accuracy are obtained finally.
  • Mughal M P, Fawad H, Mufti R A. Three-dimensional finite element modelling of deformation in weld-based rapid prototyping[J]. Journal of Mechanical Engineering Science, 2006, 220(6): 875 − 885. doi: 10.1243/09544062JMES164
    Zhao Pengkang, Fang Kui, Tang Cheng, et al. Effect of interlayer cooling time on the temperature field of 5356-TIG wire arc additive manufacturing[J]. China Welding, 2021, 30(2): 17 − 24.
    Caffrey T. Additive manufacturing and 3D printing state of the industry annual worldwide progress report[J]. Engineering Management Research, 2013, 2(1): 209 − 222.
    Yang D, He C, Zhang G. Forming characteristics of thin-wall steel parts by double electrode GMAW based additive manufacturing[J]. Journal of Materials Processing Technology, 2016, 227: 153 − 160. doi: 10.1016/j.jmatprotec.2015.08.021
    张瑞英, 蒋凡, 陈树君, 等. 旁路电源工作模式对Arcing-wire PAW电特性与熔滴过渡的影响[J]. 焊接学报, 2017, 38(2): 41 − 46.

    Zhang Ruiying, Jiang Fan, Chen Shujun, et al. Influence of bypass power mode on electrical properties and droplet transition of arcing-wire PAW[J]. Transactions of the China Welding Institution, 2017, 38(2): 41 − 46.
    李旭文, 宋刚, 张兆栋, 等. 激光诱导电弧复合增材制造316不锈钢的组织和性能[J]. 中国激光, 2019, 46(12): 101 − 109.

    Li Xuwen, Song Gang, Zhang Zhaodong, et al. Microstructure and properties of 316 stainless steel produced by laser-induced arc hybrid additive manufacturing[J]. Chinese Journal of Lasers, 2019, 46(12): 101 − 109.
    Xiong J, Zhang G J. Adaptive control of deposited height in GMAW-based layer additive manufacturing[J]. Journal of Materials Processing Technology, 2014, 214(4): 962 − 968. doi: 10.1016/j.jmatprotec.2013.11.014
    Font comas T, Diao C, Ding J, et al. A passive imaging system for geometry measurement for the plasma arc welding process[J]. IEEE Transactions on Industrial Electronics, 2017, 64(9): 7201 − 7209. doi: 10.1109/TIE.2017.2686349
    刘理想, 柏兴旺, 周祥曼, 等. 电弧增材制造多层单道堆积的焊道轮廓模型函数[J]. 焊接学报, 2020, 41(6): 24 − 29,36. doi: 10.12073/j.hjxb.20191230001

    Liu Lixiang, Bai Xingwang, Zhou Xiangman, et al. Study on the weld profile model function of multi-layer single-pass deposition in wire and arc additive manufacturing[J]. Transactions of the China Welding Institution, 2020, 41(6): 24 − 29,36. doi: 10.12073/j.hjxb.20191230001
    韩庆璘, 李大用, 李鑫磊, 等. 基于分区减光的电弧增材制造熔敷道尺寸主被动联合视觉检测[J]. 焊接学报, 2020, 41(9): 28 − 32. doi: 10.12073/j.hjxb.20200418001

    Han Qinglin, Li Dayong, Li Xinlei, et al. Bead geometry measurement for wire and arc additive manufacturing using active-passive composite vision sensing based on regional filter[J]. Transactions of the China Welding Institution, 2020, 41(9): 28 − 32. doi: 10.12073/j.hjxb.20200418001
    朱贝贝, 熊俊. 交叉件GTA填丝增材制造弧压检测与成形控制[J]. 机械工程学报, 2019, 55(15): 17 − 23. doi: 10.3901/JME.2019.15.017

    Zhu Beibei, Xiong Jun. Arc voltage detection and forming control for crossing parts in GTA additive manufacturing[J]. Journal of Mechanical Engineering, 2019, 55(15): 17 − 23. doi: 10.3901/JME.2019.15.017
    Li F, Chen S, Wu Z, et al. Adaptive process control of wire and arc additive manufacturing for fabricating complex-shaped components[J]. International Journal of Advanced Manufacturing Technology, 2018, 96: 871 − 879. doi: 10.1007/s00170-018-1590-0
    Xiong X, Zhang H, Wang G, et al. Hybrid plasma deposition and milling for an aeroengine double helix integral impeller made of superalloy[J]. Robotics and Computer-Integrated Manufacturing, 2010, 26(4): 291 − 295. doi: 10.1016/j.rcim.2009.10.002
    Ding D, Shen C, Pan Z, et al. Towards an automated robotic arc-welding-based additive manufacturing system from CAD to finished part[J]. Computer-Aided Design, 2016, 73: 66 − 75. doi: 10.1016/j.cad.2015.12.003
  • Related Articles

    [1]ZHAO Yufeng, SONG Laidong, WANG Hongyu, JIANG Yinfang, HU Zhanming. Influence of WC addition on the wear resistance mechanism of laser additively manufactured Fe-Mn-Si-Cr-Ni alloys[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION. DOI: 10.12073/j.hjxb.20240721001
    [2]ZHOU Yaju, YIN Shengming, XIA Yongzhong, YI Guoqiang, XUE Lihong, YAN Youwei. Effect of heat treatment on the microstructure and mechanical properties of wire arc additively manufactured ferrite/martensitic steel for nuclear applications[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(10): 18-26. DOI: 10.12073/j.hjxb.20221011001
    [3]WANG Hongyu, HUANG Jinlei, CHEN Sheng, ZHU Jian, MAO Jizhou. Analysis of the theory and temperature field of additive manufacturing with powder core wire based on Cu-Al-Fe alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(4): 111-119. DOI: 10.12073/j.hjxb.20220519002
    [4]ZHU Jian, WANG Hongyu, SHI Donghui, HUANG Jinlei, MAO Jizhou. Element loss behavior and compensation of additive manufacturing memory alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(9): 50-55. DOI: 10.12073/j.hjxb.20220105001
    [5]XU Bo, WANG Ying, ZHANG Meng, YANG Zhenwen, WANG Dongpo. Effect of Nb alloying on wire arc additive manufacturing NiTi-based shape memory alloys[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(8): 1-7. DOI: 10.12073/j.hjxb.20210317003
    [6]ZHANG Liang, LIU Zhiquan, GUO Yonghuan, YANG Fan, ZHONG Sujuan. Effects of CuZnAl memory particles on the microstructures and properties of brass/Sn/brass solder joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(12): 53-57. DOI: 10.12073/j.hjxb.2018390297
    [7]WANG Yingling, LI Hong, LI Zhuoxin, FENG Jicai. Microstructure and properties of transient liquid phase diffusion bonded joint for TiNi shape memory alloy and stainless steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (4): 77-80.
    [8]ZHANG Chunhua, ZHANG Zhuo, ZHANG Song, HAN Zhong, MAN Hauchung. Fretting wear behavior of laser surface melted NiTi shape memory alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (7): 22-24,28.
    [9]XU Yue-lan, CHENG Zhi-fu, FAN Xiao-long, CHU Cheng-lin, WANG Shi-dong. Plasma beam welding of shape memory alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (12): 89-92.
    [10]XUE Song-bai, LÜ Xiao-chun, ZHANG Hui-wen. Resistance brazing technology of TiNi shape memory alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2004, (1): 1-4.

Catalog

    Article views (360) PDF downloads (61) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return