Citation: | YAN Zhifeng, WANG Zhuoran, WANG Shubang, ZHANG Hongxia, HE Xiuli, DONG Peng. Fatigue properties of AZ31 magnesium alloy welded joint by double-sided friction stir welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(6): 61-68. DOI: 10.12073/j.hjxb.20211119001 |
许楠, 冯若男, 宋亓宁, 等. 微观组织对镁合金FSW焊缝应变硬化行为的影响[J]. 焊接学报, 2020, 41(11): 7−12.
Xu Nan, Feng Ruonan, Song Qining, et al. Effects of microstructure on strain hardening behavior offriction stir welded magnesium alloy[J]. Transactions of the China Welding Institution, 2020, 41(11): 7−12.
|
郭少飞, 刘雪松, 张红霞, 等. 基于能量耗散的AZ31B镁合金接头疲劳极限快速评估[J]. 焊接学报, 2020, 41(12): 38 − 43. doi: 10.12073/j.hjxb.20200919002
Guo Shaofei, Liu Xunsong, Zhang Hongxia, et al. Rapid evaluation of fatigue limit of AZ31B magnesium alloy joints based on energy dissipation[J]. Transactions of the China Welding Institution, 2020, 41(12): 38 − 43. doi: 10.12073/j.hjxb.20200919002
|
Kamal M, Rahman M M. Advances in fatigue life modeling: A review[J]. Renewable and Sustainable Energy Reviews, 2018, 82(1): 940 − 949.
|
魏巍, 孙屹博, 杨光, 等. 基于能量耗散的Q460焊接接头疲劳强度评估[J]. 焊接学报, 2021, 42(4): 49 − 55. doi: 10.12073/j.hjxb.20200907001
Wei Wei, Sun Yibo, Yang Guang, et al. Fatigue strength evaluation of Q460 weld joints based on energy dissipation[J]. Transactions of the China Welding Institution, 2021, 42(4): 49 − 55. doi: 10.12073/j.hjxb.20200907001
|
Meng X C, Huang Y X, Cao J, et al. Recent progress on control strategies for inherent issues in friction stir welding[J]. Progress in Materials Science, 2020, 115: 100706.
|
秦丰, 周军, 侯振国, 等. 6082铝合金双面搅拌摩擦焊接头组织与性能[J]. 焊接学报, 2021, 42(2): 75 − 80. doi: 10.12073/j.hjxb.20201231001
Qin Feng, Zhou Jun, Hou Zhenguo, et al. Research on microstructure and properties of double-sided friction stir welding joint of 6082 aluminum alloy[J]. Transactions of the China Welding Institution, 2021, 42(2): 75 − 80. doi: 10.12073/j.hjxb.20201231001
|
Kulwant S, Gurbhinder S, Harmeet S. Review on friction stir welding of magnesium alloys[J]. Journal of Magnesium and Alloys, 2018, 6(4): 399 − 416. doi: 10.1016/j.jma.2018.06.001
|
Haghshenas M, Gerlich A P. Joining of automotive sheet materials by friction-based welding methods: A review[J]. Engineering Science and Technology, an International Journal, 2018, 21(1): 130 − 148. doi: 10.1016/j.jestch.2018.02.008
|
Liu X C, Zhen Y Q, Sun Y F, et al. Local inhomogeneity of mechanical properties in stir zone of friction stir welded AA1050 aluminum alloy[J]. Transactions of Nonferrous Metals Society of China, 2020, 30(9): 2369 − 2380. doi: 10.1016/S1003-6326(20)65385-7
|
Mabuwa S, Msomi V. Fatigue behaviour of the multi-pass friction stir processed AA8011-H14 and AA6082-T651 dissimilar joints[J]. Engineering Failure Analysis, 2020, 118: 104876. doi: 10.1016/j.engfailanal.2020.104876
|
陈洪胜, 王文先, 陈伟, 等. 镁/铝层合板FSW接头微观组织及力学性能[J]. 焊接学报, 2020, 41(3): 38 − 44.
Chen Hongsheng, Wang Wenxian, Chen Wei, et al. Microstructure and mechanical properties of FSW joint of Mg/Al clad sheets[J]. Transactions of the China Welding Institution, 2020, 41(3): 38 − 44.
|
Darmadi D B, Talice M. Improving the strength of friction stir welded joint by double side friction welding and varying pin geometry[J]. Engineering Science and Technology an International Journal, 2021, 24(3): 637 − 647. doi: 10.1016/j.jestch.2020.11.001
|
Thakur A, Sharma V, Bhadauria S S. Effect of tool tilt angle on weld joint strength and microstructural characterization of double-sided friction stir welding of AZ31B magnesium alloy[J]. CIRP Journal of Manufacturing Science and Technology, 2021, 35: 132 − 145. doi: 10.1016/j.cirpj.2021.05.009
|
Wang X P, Yoshiaki M. Interface development and microstructure evolution during double-sided friction stir spot welding of magne- sium alloy by adjustable probes and their effects on mechanical properties of the joint[J]. Journal of Materials Processing Technology, 2021, 296: 117104.
|
马宗义, 商乔, 倪丁瑞, 等. 镁合金搅拌摩擦焊接的研究现状与展望[J]. 金属学报, 2018, 54(11): 1597 − 1617. doi: 10.11900/0412.1961.2018.00392
Ma Zongyi, Shang Qiao, Ni Dingrui, et al. Friction stir welding of magnesium alloys: a review[J]. Acta Metallurgica Sinica, 2018, 54(11): 1597 − 1617. doi: 10.11900/0412.1961.2018.00392
|
周利, 张仁晓, 舒凤远, 等. Q235钢搅拌摩擦焊接头微观组织与力学性能分析[J]. 焊接学报, 2019, 40(3): 80 − 84. doi: 10.12073/j.hjxb.2019400076
Zhou Li, Zhang Renxiao, Shu Fengyuan, et al. Microstructure and mechanical properties of friction stir welded joint of Q235 steel[J]. Transactions of the China Welding Institution, 2019, 40(3): 80 − 84. doi: 10.12073/j.hjxb.2019400076
|
Ashtiani H, Shayanpoor A A. New constitutive equation utilizing grain size for modeling of hot deformation behavior of AA1070 aluminum[J]. Transactions of Nonferrous Metals Society of China, 2021, 31(2): 345 − 357. doi: 10.1016/S1003-6326(21)65500-0
|
Li L, Yang J, Yang Z Y, et al. Towards revealing the relationship between deformation twin and fatigue crack initiation in a rolled magnesium alloy[J]. Materials Characterization, 2021, 179: 111362. doi: 10.1016/j.matchar.2021.111362
|
Yan Zhifeng , Wang Denghui, He Xiuli, et al. Deformation behaviors and cyclic strength assessment of AZ31B magnesium alloy based on steady ratcheting effect[J]. Materials Science & Engineering:A, 2018, 723(18): 212 − 220.
|
[1] | ZHANG Chengzhu, WANG Dongye, HUA Cheng, LIU Yue, ZHANG Qian, ZHU Zhenxin. Fatigue properties of B950CF steel ultra-narrow gap laser wire filler welding joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(9): 94-102. DOI: 10.12073/j.hjxb.20230920001 |
[2] | WEI Wei, ZHANG Yuntong, LIU Ke, JIA Xia, YANG Xinhua. Rapid high-cycle fatigue performance evaluation of laser-butt joints based on energy dissipation[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(12): 48-53. DOI: 10.12073/j.hjxb.20210607001 |
[3] | GUO Shaofei, LIU Xuesong, ZHANG Hongxia, YAN Zhifeng, FANG hongyuan. Rapid evaluation of fatigue limit of AZ31B magnesium alloy joints based on energy dissipation[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(12): 38-43. DOI: 10.12073/j.hjxb.20200919002 |
[4] | JIN Yuhua, ZHANG Lin, ZHANG Liangliang, WANG Xijing. Fatigue crack growth behavior of 7050 aluminum alloy friction stir welded joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(10): 11-16. DOI: 10.12073/j.hjxb.20200709002 |
[5] | JING Hongyang<sup>1,2</sup>, SU Dingbang<sup>1,2</sup>, XU Lianyong<sup>1,2</sup>, ZHAO Lei<sup>1,2</sup>. Study on high temperature low cycle fatigue behavior of P92 steel under 630℃[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(7): 33-36. DOI: 10.12073/j.hjxb.2018390170 |
[6] | WU Shengchuan, XU Xiaobo, ZHANG Weihua, LI Zheng, XU Daorong. Fatigue fracture behavior of laser-MIG hybrid welded 7075-T6 aluminium alloys[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (10): 45-48. |
[7] | WANG Wenxian, HE Xiuli, ZHANG Hongxia, LI Jinyong. Fatigue assessment of welded joints of AZ31B magnesium alloy by using critical distance method[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (10): 13-16,21. |
[8] | LIU Xuesong, LI Shuqi, WANG Ping, MENG Lichun, Lü Renyuan. Fatigue failure analysis of 6N01-T5 aluminum alloy welded joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (10): 25-28. |
[9] | LIN Guoxiang, YE Jinbao, QIU Changjun. Calculating method of reliability on anti fatigue fracture of weld[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (1): 50-52. |
[10] | Yang Yongxing, Kang Zhixin, Zhou Lixia, Cheng Hemin. Transformation Superplasticity in Welding CGHAZ and its Effect on Fatigue Life[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1996, (1): 49-55. |
1. |
任大鑫,丛凌翔,韩荣豪,宋刚,刘黎明. 根部加强的镁合金搅拌摩擦焊分析. 焊接学报. 2024(01): 23-30+130-131 .
![]() | |
2. |
张红霞. ZK60镁合金搅拌摩擦焊接头疲劳裂纹扩展分析. 山西冶金. 2024(04): 47-48+54 .
![]() | |
3. |
董芬,李铁龙,许宝卉,王付杰. AZ31B镁合金连续铸轧板材搅拌摩擦搭焊接头组织研究. 热加工工艺. 2024(12): 145-149+154 .
![]() | |
4. |
李铁龙,许宝卉,王付杰. AZ31B镁合金连铸板材双道搅拌摩擦搭接焊的力学性能. 热加工工艺. 2023(11): 59-62 .
![]() | |
5. |
刘坤,李洁,王浩,简思捷. 镁合金焊接凝固裂纹敏感性评价及晶间液相回填规律分析. 焊接学报. 2023(09): 9-15+129 .
![]() | |
6. |
杨建业,张哲,董祺,白智文. 基于Bootstrap法的轨道车辆镁合金主S-N曲线研究. 铁道技术标准(中英文). 2023(09): 8-15+32 .
![]() | |
7. |
冯超,赵雷,徐连勇,韩永典. 基于集成数据驱动方法的焊接接头疲劳寿命预测模型. 焊接学报. 2023(11): 8-13+51+129 .
![]() |