Advanced Search
YAN Zhifeng, WANG Zhuoran, WANG Shubang, ZHANG Hongxia, HE Xiuli, DONG Peng. Fatigue properties of AZ31 magnesium alloy welded joint by double-sided friction stir welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(6): 61-68. DOI: 10.12073/j.hjxb.20211119001
Citation: YAN Zhifeng, WANG Zhuoran, WANG Shubang, ZHANG Hongxia, HE Xiuli, DONG Peng. Fatigue properties of AZ31 magnesium alloy welded joint by double-sided friction stir welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(6): 61-68. DOI: 10.12073/j.hjxb.20211119001

Fatigue properties of AZ31 magnesium alloy welded joint by double-sided friction stir welding

More Information
  • Received Date: November 18, 2021
  • Available Online: April 18, 2022
  • In order to solve the problem of the low fatigue strength of single-sided welding (SSFSW) caused by the uneven heat input, double-sided friction stir welding (DSFSW) was used to weld AZ31 magnesium alloy with a thickness of 10 mm. The results show that the yield strength of DSFSW joint is 130 MPa, which is 5% higher than that of the SSFSW joint. The fatigue limit of the DSFSW joint is 88 MPa, which is 76% higher than that of the SSFSW joint. The fatigue crack of DSFSW joint starts at the advancing side of the upper/lower side, crossing the interface of the upper/lower weld seam and breaking in the retreating side (RS) of the one weld seam finally. The fatigue fracture surface of DSFSW is brittle fracture mainly composed of cleavage. The strain range of one side of DSFSW joint is close to the RS strain of SSFSW. The fatigue strength and life of magnesium alloy joint welded by DSFSW have been greatly increased.
  • 许楠, 冯若男, 宋亓宁, 等. 微观组织对镁合金FSW焊缝应变硬化行为的影响[J]. 焊接学报, 2020, 41(11): 7−12.

    Xu Nan, Feng Ruonan, Song Qining, et al. Effects of microstructure on strain hardening behavior offriction stir welded magnesium alloy[J]. Transactions of the China Welding Institution, 2020, 41(11): 7−12.
    郭少飞, 刘雪松, 张红霞, 等. 基于能量耗散的AZ31B镁合金接头疲劳极限快速评估[J]. 焊接学报, 2020, 41(12): 38 − 43. doi: 10.12073/j.hjxb.20200919002

    Guo Shaofei, Liu Xunsong, Zhang Hongxia, et al. Rapid evaluation of fatigue limit of AZ31B magnesium alloy joints based on energy dissipation[J]. Transactions of the China Welding Institution, 2020, 41(12): 38 − 43. doi: 10.12073/j.hjxb.20200919002
    Kamal M, Rahman M M. Advances in fatigue life modeling: A review[J]. Renewable and Sustainable Energy Reviews, 2018, 82(1): 940 − 949.
    魏巍, 孙屹博, 杨光, 等. 基于能量耗散的Q460焊接接头疲劳强度评估[J]. 焊接学报, 2021, 42(4): 49 − 55. doi: 10.12073/j.hjxb.20200907001

    Wei Wei, Sun Yibo, Yang Guang, et al. Fatigue strength evaluation of Q460 weld joints based on energy dissipation[J]. Transactions of the China Welding Institution, 2021, 42(4): 49 − 55. doi: 10.12073/j.hjxb.20200907001
    Meng X C, Huang Y X, Cao J, et al. Recent progress on control strategies for inherent issues in friction stir welding[J]. Progress in Materials Science, 2020, 115: 100706.
    秦丰, 周军, 侯振国, 等. 6082铝合金双面搅拌摩擦焊接头组织与性能[J]. 焊接学报, 2021, 42(2): 75 − 80. doi: 10.12073/j.hjxb.20201231001

    Qin Feng, Zhou Jun, Hou Zhenguo, et al. Research on microstructure and properties of double-sided friction stir welding joint of 6082 aluminum alloy[J]. Transactions of the China Welding Institution, 2021, 42(2): 75 − 80. doi: 10.12073/j.hjxb.20201231001
    Kulwant S, Gurbhinder S, Harmeet S. Review on friction stir welding of magnesium alloys[J]. Journal of Magnesium and Alloys, 2018, 6(4): 399 − 416. doi: 10.1016/j.jma.2018.06.001
    Haghshenas M, Gerlich A P. Joining of automotive sheet materials by friction-based welding methods: A review[J]. Engineering Science and Technology, an International Journal, 2018, 21(1): 130 − 148. doi: 10.1016/j.jestch.2018.02.008
    Liu X C, Zhen Y Q, Sun Y F, et al. Local inhomogeneity of mechanical properties in stir zone of friction stir welded AA1050 aluminum alloy[J]. Transactions of Nonferrous Metals Society of China, 2020, 30(9): 2369 − 2380. doi: 10.1016/S1003-6326(20)65385-7
    Mabuwa S, Msomi V. Fatigue behaviour of the multi-pass friction stir processed AA8011-H14 and AA6082-T651 dissimilar joints[J]. Engineering Failure Analysis, 2020, 118: 104876. doi: 10.1016/j.engfailanal.2020.104876
    陈洪胜, 王文先, 陈伟, 等. 镁/铝层合板FSW接头微观组织及力学性能[J]. 焊接学报, 2020, 41(3): 38 − 44.

    Chen Hongsheng, Wang Wenxian, Chen Wei, et al. Microstructure and mechanical properties of FSW joint of Mg/Al clad sheets[J]. Transactions of the China Welding Institution, 2020, 41(3): 38 − 44.
    Darmadi D B, Talice M. Improving the strength of friction stir welded joint by double side friction welding and varying pin geometry[J]. Engineering Science and Technology an International Journal, 2021, 24(3): 637 − 647. doi: 10.1016/j.jestch.2020.11.001
    Thakur A, Sharma V, Bhadauria S S. Effect of tool tilt angle on weld joint strength and microstructural characterization of double-sided friction stir welding of AZ31B magnesium alloy[J]. CIRP Journal of Manufacturing Science and Technology, 2021, 35: 132 − 145. doi: 10.1016/j.cirpj.2021.05.009
    Wang X P, Yoshiaki M. Interface development and microstructure evolution during double-sided friction stir spot welding of magne- sium alloy by adjustable probes and their effects on mechanical properties of the joint[J]. Journal of Materials Processing Technology, 2021, 296: 117104.
    马宗义, 商乔, 倪丁瑞, 等. 镁合金搅拌摩擦焊接的研究现状与展望[J]. 金属学报, 2018, 54(11): 1597 − 1617. doi: 10.11900/0412.1961.2018.00392

    Ma Zongyi, Shang Qiao, Ni Dingrui, et al. Friction stir welding of magnesium alloys: a review[J]. Acta Metallurgica Sinica, 2018, 54(11): 1597 − 1617. doi: 10.11900/0412.1961.2018.00392
    周利, 张仁晓, 舒凤远, 等. Q235钢搅拌摩擦焊接头微观组织与力学性能分析[J]. 焊接学报, 2019, 40(3): 80 − 84. doi: 10.12073/j.hjxb.2019400076

    Zhou Li, Zhang Renxiao, Shu Fengyuan, et al. Microstructure and mechanical properties of friction stir welded joint of Q235 steel[J]. Transactions of the China Welding Institution, 2019, 40(3): 80 − 84. doi: 10.12073/j.hjxb.2019400076
    Ashtiani H, Shayanpoor A A. New constitutive equation utilizing grain size for modeling of hot deformation behavior of AA1070 aluminum[J]. Transactions of Nonferrous Metals Society of China, 2021, 31(2): 345 − 357. doi: 10.1016/S1003-6326(21)65500-0
    Li L, Yang J, Yang Z Y, et al. Towards revealing the relationship between deformation twin and fatigue crack initiation in a rolled magnesium alloy[J]. Materials Characterization, 2021, 179: 111362. doi: 10.1016/j.matchar.2021.111362
    Yan Zhifeng , Wang Denghui, He Xiuli, et al. Deformation behaviors and cyclic strength assessment of AZ31B magnesium alloy based on steady ratcheting effect[J]. Materials Science & Engineering:A, 2018, 723(18): 212 − 220.
  • Related Articles

    [1]ZHANG Chengzhu, WANG Dongye, HUA Cheng, LIU Yue, ZHANG Qian, ZHU Zhenxin. Fatigue properties of B950CF steel ultra-narrow gap laser wire filler welding joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(9): 94-102. DOI: 10.12073/j.hjxb.20230920001
    [2]WEI Wei, ZHANG Yuntong, LIU Ke, JIA Xia, YANG Xinhua. Rapid high-cycle fatigue performance evaluation of laser-butt joints based on energy dissipation[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(12): 48-53. DOI: 10.12073/j.hjxb.20210607001
    [3]GUO Shaofei, LIU Xuesong, ZHANG Hongxia, YAN Zhifeng, FANG hongyuan. Rapid evaluation of fatigue limit of AZ31B magnesium alloy joints based on energy dissipation[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(12): 38-43. DOI: 10.12073/j.hjxb.20200919002
    [4]JIN Yuhua, ZHANG Lin, ZHANG Liangliang, WANG Xijing. Fatigue crack growth behavior of 7050 aluminum alloy friction stir welded joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(10): 11-16. DOI: 10.12073/j.hjxb.20200709002
    [5]JING Hongyang<sup>1,2</sup>, SU Dingbang<sup>1,2</sup>, XU Lianyong<sup>1,2</sup>, ZHAO Lei<sup>1,2</sup>. Study on high temperature low cycle fatigue behavior of P92 steel under 630℃[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(7): 33-36. DOI: 10.12073/j.hjxb.2018390170
    [6]WU Shengchuan, XU Xiaobo, ZHANG Weihua, LI Zheng, XU Daorong. Fatigue fracture behavior of laser-MIG hybrid welded 7075-T6 aluminium alloys[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (10): 45-48.
    [7]WANG Wenxian, HE Xiuli, ZHANG Hongxia, LI Jinyong. Fatigue assessment of welded joints of AZ31B magnesium alloy by using critical distance method[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (10): 13-16,21.
    [8]LIU Xuesong, LI Shuqi, WANG Ping, MENG Lichun, Lü Renyuan. Fatigue failure analysis of 6N01-T5 aluminum alloy welded joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (10): 25-28.
    [9]LIN Guoxiang, YE Jinbao, QIU Changjun. Calculating method of reliability on anti fatigue fracture of weld[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (1): 50-52.
    [10]Yang Yongxing, Kang Zhixin, Zhou Lixia, Cheng Hemin. Transformation Superplasticity in Welding CGHAZ and its Effect on Fatigue Life[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1996, (1): 49-55.
  • Cited by

    Periodical cited type(7)

    1. 任大鑫,丛凌翔,韩荣豪,宋刚,刘黎明. 根部加强的镁合金搅拌摩擦焊分析. 焊接学报. 2024(01): 23-30+130-131 . 本站查看
    2. 张红霞. ZK60镁合金搅拌摩擦焊接头疲劳裂纹扩展分析. 山西冶金. 2024(04): 47-48+54 .
    3. 董芬,李铁龙,许宝卉,王付杰. AZ31B镁合金连续铸轧板材搅拌摩擦搭焊接头组织研究. 热加工工艺. 2024(12): 145-149+154 .
    4. 李铁龙,许宝卉,王付杰. AZ31B镁合金连铸板材双道搅拌摩擦搭接焊的力学性能. 热加工工艺. 2023(11): 59-62 .
    5. 刘坤,李洁,王浩,简思捷. 镁合金焊接凝固裂纹敏感性评价及晶间液相回填规律分析. 焊接学报. 2023(09): 9-15+129 . 本站查看
    6. 杨建业,张哲,董祺,白智文. 基于Bootstrap法的轨道车辆镁合金主S-N曲线研究. 铁道技术标准(中英文). 2023(09): 8-15+32 .
    7. 冯超,赵雷,徐连勇,韩永典. 基于集成数据驱动方法的焊接接头疲劳寿命预测模型. 焊接学报. 2023(11): 8-13+51+129 . 本站查看

    Other cited types(4)

Catalog

    Article views (337) PDF downloads (52) Cited by(11)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return