Citation: | ZHANG Chengzhu, WANG Dongye, HUA Cheng, LIU Yue, ZHANG Qian, ZHU Zhenxin. Fatigue properties of B950CF steel ultra-narrow gap laser wire filler welding joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(9): 94-102. DOI: 10.12073/j.hjxb.20230920001 |
Ultra-NGLW is an advanced welding technology for thick bainitic steel, which has the advantages of low heat input, low stress and deformation of welded joints.By conducting high-frequency tensile fatigue tests on Ultra-NGLW joints with different "filling-bottoming" ratios, S-N curves of 10 mm thick Ultra-NGLW joints with different wire filling depths were plotted, and by comparing and analyzing the S-N curve and fatigue fracture characteristics, the main factors affecting the fatigue performance of Ultra-NGLW joints were identified. The experimental results indicate that as the depth of laser wire filling increases, the fatigue performance of the joint gradually decreases. When the filling depth is 0 mm, the fatigue strength of the joint is 337.5 MPa, while the filling depth reaches 5 mm, the fatigue strength tends to stabilize at around 270 MPa. The fatigue source of Ultra-NGLW joints is mainly welding defects such as pores and inclusions in the coarse-grained and fusion zones of the weld. Under the action of high-frequency tensile fatigue cyclic loads, more cracks are formed in the martensitic brittle hard structure in the coarse-grained zone, causing the fatigue source cracks to rapidly expand and connect the cracks in the brittle hard structure until the joint fails.
[1] |
Li R Y, Wang T J, Wang C M, et al. A study of narrow gap laser welding for thick plates using the multi-layer and multi-pass method[J]. Optics & Laser Technology, 2014, 64: 172 − 183.
|
[2] |
李军兆, 孙清洁, 张清华, 等. 空间多位置摆动激光填丝焊接熔池动态行为及焊缝成形[J]. 焊接学报, 2021, 42(10): 35 − 39.
Li Junzhao, Sun Qingjie, Zhang Qinghua, et al. Dynamic behavior of welding pool and weld formation in multi position swing laser wire filling welding in space[J]. Transactions of the China Welding Institution, 2021, 42(10): 35 − 39.
|
[3] |
Li Junzhao, Wen Kai, Sun Qingjie, et al. The comparison of multi-layer narrow-gap laser and arc welding of S32101 duplex stainless steel[J]. China Welding, 2022, 31(4): 37 − 47.
|
[4] |
Zhang X, Ashida E, Tarasawa S, et al. Welding of thick stainless steel plates up to 50 mm with high brightness lasers[J]. Journal of Laser Applications, 2011, 23(2): 807 − 819.
|
[5] |
Elmesalamy A, Francis J A, Li L. A comparison of residual stresses in multi pass narrow gap laser welds and gas-tungsten arc welds in AISI 316L stainless steel[J]. International Journal of Pressure Vessels & Piping, 2014, 113: 49 − 59.
|
[6] |
王晓南, 郑知, 曾盼林, 等. 800 MPa级高强钢光纤激光焊接接头微观结构对硬度及疲劳性能的影响[J]. 中国激光, 2016, 43(12): 115 − 124.
Wang Xiaonan, Zheng Zhi, Zeng Panglin , et al. The influence of microstructure on hardness and fatigue performance of 800 MPa high-strength steel fiber laser welded joints[J]. Chinese Journal of Lasers, 2016, 43(12): 115 − 124.
|
[7] |
任新怀, 卢庆华, 白永真. 机械振动对激光填丝焊接接头组织和疲劳性能影响[J]. 轻工机械, 2020, 38(3): 96 − 99. doi: 10.3969/j.issn.1005-2895.2020.03.020
Ren Xinhuai, Lu Qinghua, Bai Yongzhen. The effect of mechanical vibration on the microstructure and fatigue performance of laser wire filled welding joints[J]. Light Industry Machinery, 2020, 38(3): 96 − 99. doi: 10.3969/j.issn.1005-2895.2020.03.020
|
[8] |
石向阳. E36钢窄间隙激光填丝焊接工艺及焊接接头组织性能研究[D]. 辽宁: 辽宁科技大学, 2023.
Shi Xiangyang. Research on narrow gap laser wire filling welding process and welding joint structure and properties of E36 steel[D]. Liaoning: Liaoning University, 2023
|
[9] |
郭紫威, 韩荧. 低合金高强钢激光填丝焊接工艺稳定性及组织性能研究[J]. 应用激光, 2022, 42(4): 7 − 13.
Guo Ziwei, Han Ying. Study on the stability and microstructure and properties of laser wire filling welding process for low alloy high strength steel[J]. Applied Laser, 2022, 42(4): 7 − 13.
|
[10] |
Gadallah R, Shibahara M, Murakawa H. Investigation of thickness and welding residual stress effects on fatigue crack growth[J]. Journal of Constructional Steel Research, 2023, 201(2): 1 − 17.
|
[11] |
康丹丹, 万天明, 王高见, 等. 不同热输入对1000 MPa级水电工程用高强钢B950CF焊接接头组织及力学性能的影响研究[J]. 热加工工艺, 2018, 47(17): 221 − 224.
Kang Dandan, Wan Tianming, Wang Gaojian, et al. Study on the effect of different heat input on the structure and mechanical properties of high strength steel B950CF welding joint for 1000 MPa hydropower engineering[J]. Hot Working Technology, 2018, 47(17): 221 − 224.
|
[12] |
Li S X. Effects of inclusions on very high cycle fatigue properties of high strength steels[J]. International Materials Reviews, 2012, 57(2): 92 − 114. doi: 10.1179/1743280411Y.0000000008
|
[13] |
王习术, 梁锋, 曾燕屏, 等. 夹杂物对超高强度钢低周疲劳裂纹萌生及扩展影响的原位观测[J]. 金属学报, 2005, 41(12): 1272 − 1276.
Wang Xishu, Liang Feng, Zeng Yanping, et al. In situ observation of the influence of inclusions on the initiation and propagation of low cycle fatigue cracks in ultra-high strength steel[J]. Acta Metallurgica Sinica, 2005, 41(12): 1272 − 1276.
|
[14] |
韦东远, 顾家琳, 方鸿生, 等. 1500 MPa级贝氏体/马氏体复相高强度钢的疲劳特性[J]. 钢铁研究学报, 2003(4): 46 − 50. doi: 10.3321/j.issn:1001-0963.2003.04.011
Wei Dongyuan, Gu Jialin, Fang Hongsheng, et al. Fatigue characteristics of 1500 MPa bainite/martensite duplex high-strength steel[J]. Journal of Iron and Steel Research, 2003(4): 46 − 50. doi: 10.3321/j.issn:1001-0963.2003.04.011
|
[15] |
黎永钧. 低碳马氏体及马氏体/贝氏体复合组织的疲劳断裂特性[J]. 金属学报, 1991, 27(6): 70 − 75.
Li Yongjun. Fatigue fracture characteristics of low-carbon martensite and martensite/bainite composite structures[J]. Acta Metallurgica Sinica, 1991, 27(6): 70 − 75.
|
[16] |
宋余九, 李栋才, 刘静华, 等. 马氏体、贝氏体复合组织的疲劳断裂[J]. 机械工程材料, 1983(4): 16 − 20.
Song Yujiu, Li Dongcai, Liu Jinghua, et al. Fatigue fracture of martensite and bainite composite structure[J]. Materials for Mechanical Engineering, 1983(4): 16 − 20.
|
[17] |
Huang J, Li S, Zhong H, et al. Effects of notch position on the fatigue crack growth behavior of dissimilar laser welded DP980/QP980 joint[J]. Fatigue & Fracture of Engineering Materials and Structures, 2022, 45(4): 1111 − 1125.
|