Advanced Search
JING Hongyang1,2, SU Dingbang1,2, XU Lianyong1,2, ZHAO Lei1,2. Study on high temperature low cycle fatigue behavior of P92 steel under 630℃[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(7): 33-36. DOI: 10.12073/j.hjxb.2018390170
Citation: JING Hongyang1,2, SU Dingbang1,2, XU Lianyong1,2, ZHAO Lei1,2. Study on high temperature low cycle fatigue behavior of P92 steel under 630℃[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(7): 33-36. DOI: 10.12073/j.hjxb.2018390170

Study on high temperature low cycle fatigue behavior of P92 steel under 630℃

More Information
  • Received Date: December 14, 2016
  • P92 steel has been widely applied in high temperature components of power plants. With the development of the ultra supercritical power plants, the operating temperature of P92 steel has been promoted. The high temperature fatigue performance of P92 steel has a significant effect on the safety of power plants. Therefore, the fatigue test of P92 steel under 630℃ was conducted, and the effects of the strain amplitude and strain rate on the fatigue life was studied. In addition, the fatigue fracture mechanism for P92 steel was investigated by the fracture morphology analysis. The results indicated that P92 steel exhibited a cyclic softening behavior at high temperatures. The fatigue life decreased exponentially with the increasing of plastic strain amplitude. In contrast, the improvement of strain rate would promote the fatigue life. Furthermore, the fatigue fracture surface of P92 steel consisted of three zones, including fatigue source region, fatigue crack growth zone and fracture zone. The decrease of fatigue life at high strain amplitude was mainly induced by the increase of creep cavities and secondary cracks.
  • 李聪成, 荆洪阳, 徐连勇, 等. 蠕变疲劳交互作用下裂纹萌生的有限元模拟[J]. 焊接学报. 2016, 37(08):5-8. Li Congcheng, Jing Hongyang, Xu Lianyong, et al. Numerical simulation of crack initiation under creep-fatigue interaction in P92 steel[J]. Transactions of the China Welding Institution, 2016, 37(08):5-8.
    Wang N, Tu S T, Xuan F Z. A novel prediction method of creep rupture life of 9-12% chromium ferritic steel based on abductive network[J]. Engineering Failure Analysis, 2013, 31:302-310.
    Samuel E I, Choudhary B K, Palaparti D P R, et al. Creep deformation and rupture behaviour of P92 steel at 923K[J]. Procedia Engineering, 2013, 55:64-69.
    Chang Y, Xu H, Ni Y, et al. The effect of multiaxial stress state on creep behavior and fracture mechanism of P92 steel[J]. Materials Science and Engineering:A, 2015, 636:70-76.
    毛雪平, 陆道纲, 徐鸿, 等. P92钢高温低周疲劳的实验研究[J]. 原子能科学技术. 2010, 44(10):1212-1216. Mao Xueping, Lu Daogang, Xu Hong, et al. Experimental study on elevated temperature low cycle fatigue of P92 steel[J]. Atomic Energy Science and Technology, 2010, 44(10):1212-1216.
    Kannan R, Sankar V, Sandhya R, et al. Comparative evaluation of the low cycle fatigue behaviours of P91 and P92 steels[J]. Procedia Engineering, 2013, 55:149-153.
    张振, 胡正飞, 范立坤, 等. 国产P92钢低周疲劳性能与断裂特征研究[J]. 动力工程学报. 2014, 34(04):330-336. Zhang Zhen, Hu Zhengfei, Fan Likun, et al. Low cycle fatigue and fracture properties of domestic P92 heat-resistant steels[J]. Journal of Chinese Society of Power Engineering, 2014, 34(04):330-336.
    Luo, Y R, Huang, C X, Tian, R H. Effect of strain rate on low cycle fatigue behaviors of high-strength structural steel[J]. Journal of Iron and Steel Research, 2013, 20(7):50-56.
    Park J S, Kim S J, Lee C S. Effect of W addition on the low cycle fatigue behavior of high Cr ferritic steels[J]. Materials Science and Engineering:A, 2001, 298(1-2):127-136.
  • Related Articles

    [1]YANG Xuexia, SUN Qinrun, ZHANG Weiwei. Structure optimization design of BGA solder joints based on surface response method[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(11): 36-41. DOI: 10.12073/j.hjxb.20220810002
    [2]GAO Chao, HUANG Chunyue, LIANG ying, LIU Shoufu, ZHANG Huaiquan. Analysis of stress and strain in BGA solder joints under power cyclic load[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(7): 63-70. DOI: 10.12073/j.hjxb.20220811004
    [3]XING Xiaofang, BEN Qiang, ZHOU Yong, LU Hao, HAN Pei. Process optimization of projection welding of nut based on regression analysis[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(12): 91-96. DOI: 10.12073/j.hjxb.20200413004
    [4]HE Youyou, LIU Weijie, LI Qi. Multivariate nonlinear regression design of resistance spot welding for an advanced hot-formed steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(7): 75-78.
    [5]TAO Bohao, LI Hong, SONG Yonglun, LI Qiang. Analysis of orthogonal test of properties of dual-phase DP600 steel resistance spot welded joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (6): 81-84.
    [6]LU Lin, CHANG Yunlong, LI Yingmin, LU Ming, YANG Xu. Nonlinear multiple regression model of stainless steel tube magnetic control high-speed TIG welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (6): 93-96.
    [7]LU Qinghua, XU Jijin, CHEN Ligong, YU Zhishui. Regression analysis on maximum vibratory welding temperature at different parameters[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (11): 89-92.
    [8]ZHAO Hongyun, YANG Xianqun, Shu Fengyuan, XU Chunhua, WU Jianqian. Comparative analysis on predictions of the geometric form of laser clading[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (1): 51-54,59.
    [9]ZHANG Zhong-dian, LI Dong-qing, YIN Xiao-hui. Study on Spot Welding Quality Monitoring Models by Linear Regression Theory[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2001, (4): 31-35.
    [10]Sun Lunqiang, Wu Lin. A Regression Model of Weld Bead Geometry for Pulsed MAG Welding in Multipositions[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1996, (4): 249-257.
  • Cited by

    Periodical cited type(6)

    1. 马晓阳,何亮,成应晋,王杏华,程彬,贺智涛. BP神经网络预测船用钢焊接接头力学性能研究. 金属制品. 2024(03): 59-63 .
    2. 黄伟波,赵晓宇. 选区激光熔化成形参数对熔池尺寸的影响. 肇庆学院学报. 2023(05): 65-73+79 .
    3. 马佳博,王成玥,陈峰. 加激光选区熔化成形技术的产品设计三维模型研究. 激光杂志. 2020(05): 134-138 .
    4. 吕小青,王旭,徐连勇,荆洪阳,韩永典. 基于组合模型的MAG焊工艺参数多目标优化. 焊接学报. 2020(02): 6-11+97 . 本站查看
    5. 邢晓芳,贲强,周勇,路浩,韩佩. 基于回归分析的螺母凸焊工艺优化. 焊接学报. 2020(12): 91-96+102 . 本站查看
    6. 常峰博,高亮,陈宇翔,佟志光,李铭钰,滕征泰. 正交法激光焊接双相钢工艺优化. 应用激光. 2020(06): 1061-1066 .

    Other cited types(3)

Catalog

    Article views (760) PDF downloads (58) Cited by(9)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return