Citation: | GUO Shaofei, LIU Xuesong, ZHANG Hongxia, YAN Zhifeng, FANG hongyuan. Rapid evaluation of fatigue limit of AZ31B magnesium alloy joints based on energy dissipation[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(12): 38-43. DOI: 10.12073/j.hjxb.20200919002 |
张婷婷, 王文先, 魏屹, 等. 钛/铝/镁爆炸焊复合板波形界面及力学性能[J]. 焊接学报, 2017, 38(8): 33 − 36. doi: 10.12073/j.hjxb.20151021001
Zhang Tingting, Wang Wenxian, Wei Yi, et al. Waveform interface and mechanical properties of Ti/Al/Mg explosively welded composite plate[J]. Transactions of the China Welding Institution, 2017, 38(8): 33 − 36. doi: 10.12073/j.hjxb.20151021001
|
Wei G, Odsuren O, Yue X, et al. Combine S-N curve and fracture mechanics for fatigue life analysis of welded structures[J]. China Welding, 2019, 28(4): 39 − 45.
|
Yang W, Guo X, Guo Q, et al. Rapid evaluation for high-cycle fatigue reliability of metallic materials through quantitative thermography methodology[J]. International Journal of Fatigue, 2019, 124: 461 − 472. doi: 10.1016/j.ijfatigue.2019.03.024
|
Wang X G, Feng E S, Jiang C. A microplasticity evaluation method in very high cycle fatigue[J]. International Journal of Fatigue, 2017, 94: 6 − 15. doi: 10.1016/j.ijfatigue.2016.09.004
|
Fan J, Zhao Y, Guo X. A unifying energy approach for high cycle fatigue behavior evaluation[J]. Mechanics of Materials, 2018, 120: 15 − 25. doi: 10.1016/j.mechmat.2018.02.001
|
La Rosa G, Risitano A. Thermographic methodology for rapid determination of the fatigue limit of materials and mechanical components[J]. International Journal of Fatigue, 2000, 22(1): 65 − 73. doi: 10.1016/S0142-1123(99)00088-2
|
De Finis R, Palumbo D, Da Silva M M, et al. Is the temperature plateau of a self-heating test a robust parameter to investigate the fatigue limit of steels with thermography?[J]. Fatigue & Fracture of Engineering Materials & Structures, 2018, 41(4): 917 − 934.
|
De Finis R, Palumbo D, Ancona F, et al. Fatigue limit evaluation of various martensitic stainless steels with new robust thermographic data analysis[J]. International Journal of Fatigue, 2015, 74: 88 − 96. doi: 10.1016/j.ijfatigue.2014.12.010
|
Ranc N, Blanche A, Ryckelynck D, et al. POD preprocessing of IR thermal data to assess heat source distributions[J]. Experimental Mechanics, 2015, 55(4): 725 − 739. doi: 10.1007/s11340-014-9858-2
|
Zhang H X, Wu G H, Yan Z F, et al. An experimental analysis of fatigue behavior of AZ31B magnesium alloy welded joint based on infrared thermography[J]. Materials & Design, 2014, 55: 785 − 791.
|
Facchinetti M, Florin P, Doudard C, et al. Identification of self-heating phenomena under cyclic loadings using full-field thermal and kinematic measurements: application to high-cycle fatigue of seam weld joints[J]. Experimental Mechanics, 2015, 55(4): 681 − 698. doi: 10.1007/s11340-013-9835-1
|
[1] | ZHANG Guiqing, REN Yinglei, SU Yunhai. Microstructure and mechanical properties of magnesium alloy welded joint under the combined effect of magnetic field and NiCl2 activated flux[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(8): 48-54. DOI: 10.12073/j.hjxb.20200313001 |
[2] | LI Yajie, LI Fengfeng, WU Zhisheng, QIN Fengming. Influence of technological parameters on microstructure and mechanical properties of FSW AZ31 magnesium alloy joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(4): 31-37. DOI: 10.12073/j.hjxb.20191210003 |
[3] | LI Zhijun, WANG Hongying. Microstructure and mechanical properties of YAG pulse laser butt joint of thin AZ61 magnesium alloy sheets[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (8): 69-72. |
[4] | LIU Zhengjun, ZHAO Fudong, SU Yunhai, QI Yiuhong. Research of microstructure and mechanical behavior of welded joint of AZ91 magnesium alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (6): 27-30. |
[5] | YANG Suyuan, ZHANG Baolei. Microstructures and mechanical properties of thick AZ31 magnesium alloy welded joint by friction stir welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (5): 1-4. |
[6] | GAO Chen, LI Hong, LI Zhuoxin. Microstructure and mechanical property of ultrasonic soldered joint of AZ31B magnesium alloys[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (2): 129-132. |
[7] | GAO Ming, ZENG Xiaoyan, LIN Tianxiao, YAN Jun. Primary study of laser-MIG hybrid welding for MB8 magnesium alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (2): 71-74. |
[8] | TAN Bing, WANG Youqi, CHEN Donggao, WANG Ying. Microstructure and properties of electron beam welded joints of AZ31B magnesium alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (9): 75-78. |
[9] | LUO Jun, LIU Zhengjun, SU Yunhai, TIAN Yu. Influence of longitudinal direct-current magnetic field on microstructure and property of AZ31 magnesium alloy TIG welded joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (7): 53-56. |
[10] | ZHANG Hua, LIN San-bao, WU Lin, FENG Ji-Cai, GUO He-ping. Mechanical properties of friction stir welds on AZ31 magnesium alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2003, (5): 65-68. |