Citation: | JIN Yuhua, ZHANG Lin, ZHANG Liangliang, WANG Xijing. Fatigue crack growth behavior of 7050 aluminum alloy friction stir welded joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(10): 11-16. DOI: 10.12073/j.hjxb.20200709002 |
金玉花, 霍仁杰, 李常锋, 等. 转速对 7055 铝合金搅拌摩擦焊接头断裂特征的影响[J]. 焊接学报, 2017, 38(2): 10 − 13.
Jin Yuhua, Huo Renjie, Li Changfeng, et al. Influence of ratational speed on fracture characteristics of 7055 aluminum alloy friction stir weld joints[J]. Transactions of the China Welding Institution, 2017, 38(2): 10 − 13.
|
Tran Hung Tra, Masakazu Okazaki, Kenji Suzuki. Fatigue crack propagation behavior in friction stir welding of AA6063-T5: Roles of residual stress and microstructure[J]. International Journal of Fatigue, 2012, 43: 23 − 29. doi: 10.1016/j.ijfatigue.2012.02.003
|
王希靖, 李树伟, 牛勇, 等. A7075搅拌摩擦焊疲劳裂纹扩展速率试验分析[J]. 焊接学报, 2008, 29(9): 5 − 7. doi: 10.3321/j.issn:0253-360X.2008.09.002
Wang Xijing, Li Shuwei, Niu Yong, et al. Fatigue crack growth rate of A7075FSW[J]. Transactions of the China Welding Institution, 2008, 29(9): 5 − 7. doi: 10.3321/j.issn:0253-360X.2008.09.002
|
Zou B L, Yang X Q, Chen J H. Fatigue crack growth rates in friction stir welding joints of 7075-T6 Al alloy and fatigue life prediction based on AFGROW[J]. Advanced Materials Research, 2011, 337: 507 − 510. doi: 10.4028/www.scientific.net/AMR.337.507
|
Shou W B, Yi D Q, Liu H Q, et al. Effect of grain size on the fatigue crack growth behavior of 2524-T3 aluminum alloy[J]. Archives of Civil and Mechanical Engineering, 2016, 16(3): 304 − 312. doi: 10.1016/j.acme.2016.01.004
|
王希靖, 李娜, 张忠科, 等. LY12 铝合金搅拌摩擦焊接头残余应力分析[J]. 焊接学报, 2012, 33(9): 81 − 84.
Wang Xijing, Li Na, Zhang Zhongke, et al. FSW residual stress of aluminum alloy LY12[J]. Transactions of the China Welding Institution, 2012, 33(9): 81 − 84.
|
蹇海根, 姜锋, 郑秀媛, 等. 采用EBSD研究高强铝合金的疲劳裂纹扩展行为[J]. 材料热处理学报, 2011, 32(2): 75 − 80.
Jian Haigen, Jiang Feng, Zheng Xiuyuan, et al. EBSD analysis of propagation behaviour of fatigue cracks in high strength aluminum alloy[J]. Transactions of Materials and Heat Treatment, 2011, 32(2): 75 − 80.
|
王平, 梁田, 侯世耀, 等. Ti-15-3合金中短裂纹萌生与扩展的微观机理[J]. 东北大学学报(自然科学版), 2008, 29(12): 1711 − 1714.
Wang Ping, Liang Tian, Hou Shiyao, et al. Micromechanism of short crack initiation and propagation in Ti-153 alloy[J]. Journal of Northeastern University(Natural Science), 2008, 29(12): 1711 − 1714.
|
黄舒. 激光喷丸强化铝合金的疲劳裂纹扩展特性及延寿机理研究[D]. 苏州: 江苏大学, 2012.
Huang Shu. Investigation of laser peening on the fatigue crack growth properties and life extension mechanism of 6061-T6 aluminum alloy[D]. Suzhou: Jiangsu University, 2012.
|
王艺淋, 潘清林, 韦莉莉, 等. 高强7050-T7451铝合金厚板的疲劳断口特征[J]. 机械工程材料, 2013, 37(6): 26 − 30.
Wang Yilin, Pan Qinglin, Wei Lili, et al. Fatigue fracture characteristic of 7050-T7451 high-strength aluminum alloy thick plate[J]. Materials for Mechanical Engineering, 2013, 37(6): 26 − 30.
|
[1] | ZHENG Guangzhen, HAN Hongbiao, WANG Rui, ZHANG Peng. Electrode wobble technology of electro-spark deposition based on orthogonal tests[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2025, 46(3): 43-50, 136. DOI: 10.12073/j.hjxb.20231215001 |
[2] | SU Guoxing, SHI Yu, ZHU Ming, ZHANG Gang. Microstructure and properties of Inconel 718 cladding layer efficiently fabricated by laser metal deposition with hot wire[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION. DOI: 10.12073/j.hjxb.20240628003 |
[3] | LI Mengnan, HAN Hongbiao, LI Shikang, HOU Yujie. Effect of rotating electrode contact force on discharge parameters and material transfer in electric-spark deposition[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(1): 71-77. DOI: 10.12073/j.hjxb.20220206001 |
[4] | WANG Shun, TONG Jinzhong, HAN Hongbiao. An automatic control device of contact force for electro-spark deposition and deposition test[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(3): 42-47. DOI: 10.12073/j.hjxb.20201108001 |
[5] | MA Zongbiao, HUANG Pengfei, ZHANG Xuanning, WANG Yachun, DAI Hongbo, WANG Guanghui. Experimental study on deposition rate of high efficiency hot wire GMAW welding process[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(1): 44-48. DOI: 10.12073/j.hjxb.20200605004 |
[6] | WANG Xiaoguang, LIU Fencheng, FANG Ping, WU Shifeng. Forming accuracy and properties of wire arc additive manufacturing of 316L components using CMT process[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(5): 100-106. DOI: 10.12073/j.hjxb.2019400135 |
[7] | HAN Hongbiao, GUO Jingdi, JIAO Wenqing. Discharge mechanism of electro-spark deposition with rotary electrode[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(5): 67-72. DOI: 10.12073/j.hjxb.2019400129 |
[8] | WANG Xiaorong, WANG Zhaoqin, HE Peng, LIN Tiesong. Numerical control deposition of AlCoCrFeNi high-entropy alloy on 45 steel by high energy micro arc spark[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(10): 73-76. |
[9] | GAO Ying, HAN Jinghua, LOU Liyan, LI Huan. Influence of electrode pressure on Cr12MoV electric-spark depositing YG6 process[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(1): 45-48. |
[10] | ZHANG Jian-qiang, ZHAO Hai-yan, WU Su, WANG Cheng-quan, CHEN Bing-quan. Mechanical measuring and calculation method of heat efficiency of welding arc[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2003, (6): 63-65,76. |