Advanced Search
JIN Yuhua, ZHANG Lin, ZHANG Liangliang, WANG Xijing. Fatigue crack growth behavior of 7050 aluminum alloy friction stir welded joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(10): 11-16. DOI: 10.12073/j.hjxb.20200709002
Citation: JIN Yuhua, ZHANG Lin, ZHANG Liangliang, WANG Xijing. Fatigue crack growth behavior of 7050 aluminum alloy friction stir welded joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(10): 11-16. DOI: 10.12073/j.hjxb.20200709002

Fatigue crack growth behavior of 7050 aluminum alloy friction stir welded joint

More Information
  • Received Date: July 08, 2020
  • Available Online: October 28, 2020
  • The fatigue crack growth behavior of 5 mm thick 7050 aluminum alloy friction stir welding joints in different areas was analyzed and studied. The results show that the fatigue crack growth rate is the fastest in the weld nugget zone. The second is the position of the thermo-mechanically affected zone of advancing side. The fatigue crack growth rate is the slowest in the thermo-mechanically affected zone of retreating side. The fatigue crack is propagated by intergranular and transgranular mixing in the weld nugget zone, while the crack is propagated by transgranular in the thermo-mechanically affected zone. The deflection of the crack and the generation of the crack branch will reduce the fatigue crack growth rate. In the initial stage of fatigue crack growth, the fracture surface of the weld nugget zone is distributed with grain size fracture planes, and fatigue striations are generated; fatigue striations did not occur in the thermo-mechanically affected zone, but tire indentation patterns appear here. During the steady-state propagation of fatigue crack, the crack growth rate increased, and fatigue striations appeared in the weld nugget zone and the thermo-mechanically affected zone, and secondary cracks were generated.
  • 金玉花, 霍仁杰, 李常锋, 等. 转速对 7055 铝合金搅拌摩擦焊接头断裂特征的影响[J]. 焊接学报, 2017, 38(2): 10 − 13.

    Jin Yuhua, Huo Renjie, Li Changfeng, et al. Influence of ratational speed on fracture characteristics of 7055 aluminum alloy friction stir weld joints[J]. Transactions of the China Welding Institution, 2017, 38(2): 10 − 13.
    Tran Hung Tra, Masakazu Okazaki, Kenji Suzuki. Fatigue crack propagation behavior in friction stir welding of AA6063-T5: Roles of residual stress and microstructure[J]. International Journal of Fatigue, 2012, 43: 23 − 29. doi: 10.1016/j.ijfatigue.2012.02.003
    王希靖, 李树伟, 牛勇, 等. A7075搅拌摩擦焊疲劳裂纹扩展速率试验分析[J]. 焊接学报, 2008, 29(9): 5 − 7. doi: 10.3321/j.issn:0253-360X.2008.09.002

    Wang Xijing, Li Shuwei, Niu Yong, et al. Fatigue crack growth rate of A7075FSW[J]. Transactions of the China Welding Institution, 2008, 29(9): 5 − 7. doi: 10.3321/j.issn:0253-360X.2008.09.002
    Zou B L, Yang X Q, Chen J H. Fatigue crack growth rates in friction stir welding joints of 7075-T6 Al alloy and fatigue life prediction based on AFGROW[J]. Advanced Materials Research, 2011, 337: 507 − 510. doi: 10.4028/www.scientific.net/AMR.337.507
    Shou W B, Yi D Q, Liu H Q, et al. Effect of grain size on the fatigue crack growth behavior of 2524-T3 aluminum alloy[J]. Archives of Civil and Mechanical Engineering, 2016, 16(3): 304 − 312. doi: 10.1016/j.acme.2016.01.004
    王希靖, 李娜, 张忠科, 等. LY12 铝合金搅拌摩擦焊接头残余应力分析[J]. 焊接学报, 2012, 33(9): 81 − 84.

    Wang Xijing, Li Na, Zhang Zhongke, et al. FSW residual stress of aluminum alloy LY12[J]. Transactions of the China Welding Institution, 2012, 33(9): 81 − 84.
    蹇海根, 姜锋, 郑秀媛, 等. 采用EBSD研究高强铝合金的疲劳裂纹扩展行为[J]. 材料热处理学报, 2011, 32(2): 75 − 80.

    Jian Haigen, Jiang Feng, Zheng Xiuyuan, et al. EBSD analysis of propagation behaviour of fatigue cracks in high strength aluminum alloy[J]. Transactions of Materials and Heat Treatment, 2011, 32(2): 75 − 80.
    王平, 梁田, 侯世耀, 等. Ti-15-3合金中短裂纹萌生与扩展的微观机理[J]. 东北大学学报(自然科学版), 2008, 29(12): 1711 − 1714.

    Wang Ping, Liang Tian, Hou Shiyao, et al. Micromechanism of short crack initiation and propagation in Ti-153 alloy[J]. Journal of Northeastern University(Natural Science), 2008, 29(12): 1711 − 1714.
    黄舒. 激光喷丸强化铝合金的疲劳裂纹扩展特性及延寿机理研究[D]. 苏州: 江苏大学, 2012.

    Huang Shu. Investigation of laser peening on the fatigue crack growth properties and life extension mechanism of 6061-T6 aluminum alloy[D]. Suzhou: Jiangsu University, 2012.
    王艺淋, 潘清林, 韦莉莉, 等. 高强7050-T7451铝合金厚板的疲劳断口特征[J]. 机械工程材料, 2013, 37(6): 26 − 30.

    Wang Yilin, Pan Qinglin, Wei Lili, et al. Fatigue fracture characteristic of 7050-T7451 high-strength aluminum alloy thick plate[J]. Materials for Mechanical Engineering, 2013, 37(6): 26 − 30.
  • Related Articles

    [1]LI Yue, ZHAO Yangyang, DENG Caiyan, GONG Baoming. Analysis of fatigue crack growth rate of welded joint after immersion corrosion[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(9): 14-22. DOI: 10.12073/j.hjxb.20231004001
    [2]ZHANG Xinmeng, GAO Shikang, LI Gaohui, ZHANG Haifeng, ZHOU Li, WANG Ping. Study on the fatigue performance of bobbin tool friction stir welding of 6005A-T6 aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(9): 30-36. DOI: 10.12073/j.hjxb.20221119001
    [3]WANG Lei, LI Dongxia, HUI Li, SHEN Zhenxin, ZHOU Song. Fatigue crack propagation behavior and life prediction of 2024-T4 aluminum alloy FSW joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(4): 77-83. DOI: 10.12073/j.hjxb.20220507002
    [4]WANG Lei, FU Qiang, AN Jinlan, ZHOU Song. Multi-zone fatigue crack growth behavior of friction stir welding of 2A12-T4 aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(2): 24-29. DOI: 10.12073/j.hjxb.20200724001
    [5]DENG Caiyan, GAO Ren, GONG Baoming, WANG Dongpo. Research on ultra-high-cycle fatigue properties of 7050 aluminum alloy FSW welded joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(11): 114-118. DOI: 10.12073/j.hjxb.2018390284
    [6]DAI Qilei, MENG Lichun, LIANG Zhifang, WU Jianjun, SHI Qingyu. Comparison of fatigue crack propagation behavior of friction stir welded and metal inert-gas welded A6N01 joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(9): 9-12,38.
    [7]WANG Xijing, LI Shuwei, NIU Yong, Zhang Jie. Fatigue crack growth rate of A7075 FSW[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (9): 5-7.
    [8]JIA Fa-yong, HUO Li-xing, ZHANG Yu-feng, YANG Xin-qi. Study of Fatigue Crack Propagation Rate for 20MnHR Steel Used in Nuclear Industry[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2001, (3): 67-70.
    [9]Gao Jiming, Huang Yuhua, Liu Romgxuan, Chen Jiaquan. Fatigue Crack Growth Rate in Weld Metal of Steel HQ-60 Under High Stress Ratio[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1995, (4): 190-195.
    [10]Jia Andong, Zhang Jixuan, Chen Dihua. Low-cycle corrosion fatigue crack growth rate equations of welded joints for several steels[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1995, (1): 45-49.
  • Cited by

    Periodical cited type(2)

    1. 庞嘉尧,程伟. 铝合金搅拌摩擦焊接头疲劳性能研究进展. 兵器材料科学与工程. 2025(01): 164-175 .
    2. 邹阳,魏巍,范悦,王泽震,王强,赵亮. 铝合金搅拌摩擦焊工艺研究进展. 热加工工艺. 2024(03): 7-13 .

    Other cited types(2)

Catalog

    Article views (494) PDF downloads (37) Cited by(4)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return