Citation: | JIN Yuhua, ZHANG Lin, ZHANG Liangliang, WANG Xijing. Fatigue crack growth behavior of 7050 aluminum alloy friction stir welded joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(10): 11-16. DOI: 10.12073/j.hjxb.20200709002 |
金玉花, 霍仁杰, 李常锋, 等. 转速对 7055 铝合金搅拌摩擦焊接头断裂特征的影响[J]. 焊接学报, 2017, 38(2): 10 − 13.
Jin Yuhua, Huo Renjie, Li Changfeng, et al. Influence of ratational speed on fracture characteristics of 7055 aluminum alloy friction stir weld joints[J]. Transactions of the China Welding Institution, 2017, 38(2): 10 − 13.
|
Tran Hung Tra, Masakazu Okazaki, Kenji Suzuki. Fatigue crack propagation behavior in friction stir welding of AA6063-T5: Roles of residual stress and microstructure[J]. International Journal of Fatigue, 2012, 43: 23 − 29. doi: 10.1016/j.ijfatigue.2012.02.003
|
王希靖, 李树伟, 牛勇, 等. A7075搅拌摩擦焊疲劳裂纹扩展速率试验分析[J]. 焊接学报, 2008, 29(9): 5 − 7. doi: 10.3321/j.issn:0253-360X.2008.09.002
Wang Xijing, Li Shuwei, Niu Yong, et al. Fatigue crack growth rate of A7075FSW[J]. Transactions of the China Welding Institution, 2008, 29(9): 5 − 7. doi: 10.3321/j.issn:0253-360X.2008.09.002
|
Zou B L, Yang X Q, Chen J H. Fatigue crack growth rates in friction stir welding joints of 7075-T6 Al alloy and fatigue life prediction based on AFGROW[J]. Advanced Materials Research, 2011, 337: 507 − 510. doi: 10.4028/www.scientific.net/AMR.337.507
|
Shou W B, Yi D Q, Liu H Q, et al. Effect of grain size on the fatigue crack growth behavior of 2524-T3 aluminum alloy[J]. Archives of Civil and Mechanical Engineering, 2016, 16(3): 304 − 312. doi: 10.1016/j.acme.2016.01.004
|
王希靖, 李娜, 张忠科, 等. LY12 铝合金搅拌摩擦焊接头残余应力分析[J]. 焊接学报, 2012, 33(9): 81 − 84.
Wang Xijing, Li Na, Zhang Zhongke, et al. FSW residual stress of aluminum alloy LY12[J]. Transactions of the China Welding Institution, 2012, 33(9): 81 − 84.
|
蹇海根, 姜锋, 郑秀媛, 等. 采用EBSD研究高强铝合金的疲劳裂纹扩展行为[J]. 材料热处理学报, 2011, 32(2): 75 − 80.
Jian Haigen, Jiang Feng, Zheng Xiuyuan, et al. EBSD analysis of propagation behaviour of fatigue cracks in high strength aluminum alloy[J]. Transactions of Materials and Heat Treatment, 2011, 32(2): 75 − 80.
|
王平, 梁田, 侯世耀, 等. Ti-15-3合金中短裂纹萌生与扩展的微观机理[J]. 东北大学学报(自然科学版), 2008, 29(12): 1711 − 1714.
Wang Ping, Liang Tian, Hou Shiyao, et al. Micromechanism of short crack initiation and propagation in Ti-153 alloy[J]. Journal of Northeastern University(Natural Science), 2008, 29(12): 1711 − 1714.
|
黄舒. 激光喷丸强化铝合金的疲劳裂纹扩展特性及延寿机理研究[D]. 苏州: 江苏大学, 2012.
Huang Shu. Investigation of laser peening on the fatigue crack growth properties and life extension mechanism of 6061-T6 aluminum alloy[D]. Suzhou: Jiangsu University, 2012.
|
王艺淋, 潘清林, 韦莉莉, 等. 高强7050-T7451铝合金厚板的疲劳断口特征[J]. 机械工程材料, 2013, 37(6): 26 − 30.
Wang Yilin, Pan Qinglin, Wei Lili, et al. Fatigue fracture characteristic of 7050-T7451 high-strength aluminum alloy thick plate[J]. Materials for Mechanical Engineering, 2013, 37(6): 26 − 30.
|
[1] | LI Yue, ZHAO Yangyang, DENG Caiyan, GONG Baoming. Analysis of fatigue crack growth rate of welded joint after immersion corrosion[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(9): 14-22. DOI: 10.12073/j.hjxb.20231004001 |
[2] | ZHANG Xinmeng, GAO Shikang, LI Gaohui, ZHANG Haifeng, ZHOU Li, WANG Ping. Study on the fatigue performance of bobbin tool friction stir welding of 6005A-T6 aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(9): 30-36. DOI: 10.12073/j.hjxb.20221119001 |
[3] | WANG Lei, LI Dongxia, HUI Li, SHEN Zhenxin, ZHOU Song. Fatigue crack propagation behavior and life prediction of 2024-T4 aluminum alloy FSW joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(4): 77-83. DOI: 10.12073/j.hjxb.20220507002 |
[4] | WANG Lei, FU Qiang, AN Jinlan, ZHOU Song. Multi-zone fatigue crack growth behavior of friction stir welding of 2A12-T4 aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(2): 24-29. DOI: 10.12073/j.hjxb.20200724001 |
[5] | DENG Caiyan, GAO Ren, GONG Baoming, WANG Dongpo. Research on ultra-high-cycle fatigue properties of 7050 aluminum alloy FSW welded joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(11): 114-118. DOI: 10.12073/j.hjxb.2018390284 |
[6] | DAI Qilei, MENG Lichun, LIANG Zhifang, WU Jianjun, SHI Qingyu. Comparison of fatigue crack propagation behavior of friction stir welded and metal inert-gas welded A6N01 joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(9): 9-12,38. |
[7] | WANG Xijing, LI Shuwei, NIU Yong, Zhang Jie. Fatigue crack growth rate of A7075 FSW[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (9): 5-7. |
[8] | JIA Fa-yong, HUO Li-xing, ZHANG Yu-feng, YANG Xin-qi. Study of Fatigue Crack Propagation Rate for 20MnHR Steel Used in Nuclear Industry[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2001, (3): 67-70. |
[9] | Gao Jiming, Huang Yuhua, Liu Romgxuan, Chen Jiaquan. Fatigue Crack Growth Rate in Weld Metal of Steel HQ-60 Under High Stress Ratio[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1995, (4): 190-195. |
[10] | Jia Andong, Zhang Jixuan, Chen Dihua. Low-cycle corrosion fatigue crack growth rate equations of welded joints for several steels[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1995, (1): 45-49. |
1. |
庞嘉尧,程伟. 铝合金搅拌摩擦焊接头疲劳性能研究进展. 兵器材料科学与工程. 2025(01): 164-175 .
![]() | |
2. |
邹阳,魏巍,范悦,王泽震,王强,赵亮. 铝合金搅拌摩擦焊工艺研究进展. 热加工工艺. 2024(03): 7-13 .
![]() |