Citation: | WEN Qi, LIU Jinglin, MENG Xiangchen, HUANG Yongxian, WAN Long. Development in key technique and equipment of friction stir additive manufacturing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(6): 1-10. DOI: 10.12073/j.hjxb.20210616004 |
冯小军. 快速制造技术[M]. 北京: 机械工业出版社, 2004.
Feng Xiaojun. Rapid manufacturing technology[M]. Beijing: China Machine Press, 2004.
|
Meng X C, Huang Y X, Cao J, et al. Recent progress on control strategies for inherent issues in friction stir welding[J]. Progress in Materials Science, 2020, 115: 100706.
|
Kandasamy K. Solid state joining using additive friction stir processing: US10105790B2[P]. 2018.
|
Palanivel S, Sidhar H, Mishra R S. Friction stir additive manufacturing: Route to high structural performance[J]. Jom, 2015, 67(3): 616 − 621. doi: 10.1007/s11837-014-1271-x
|
Troysi F D, Brito P P. Development and characterization of an iron aluminide coating on mild steel substrate obtained by friction surfacing and heat treatment[J]. The International Journal of Advanced Manufacturing Technology, 2020, 111(9-10): 1 − 8.
|
Rathee S, Srivastava M, Maheshwari S, et al. Friction based additive manufacturing technologies: principles for building in solid state, benefits, limitations, and applications[M]. Florida: CRC Press, 2018.
|
Yu H Z, Mishra R S. Additive friction stir deposition: a deformation processing route to metal additive manufacturing[J]. Materials Research Letters, 2021, 9(2): 71 − 83. doi: 10.1080/21663831.2020.1847211
|
王红军. 增材制造的研究现状与发展趋势[J]. 北京信息科技大学学报(自然科学版), 2014, 29(3): 20 − 24.
Wang Hongjun. Research status and development tendency of additive manufacturing[J]. Journal of Beijing Information Science and Technology University, 2014, 29(3): 20 − 24.
|
朱雪岩. 基于电磁感应加热技术的高温金属3D打印设备研制与工艺研究[D]. 宁波: 宁波大学, 2018.
Zhu Xueyan. Development of equipment and process of high temperature metal 3D printing based on electromagnetic induction heating technology[D]. Ningbo: Ningbo University, 2018.
|
Zhao C, Parab N D, Li X, et al. Critical instability at moving keyhole tip generates porosity in laser melting[J]. Science, 2020, 370(6520): 1080 − 1086. doi: 10.1126/science.abd1587
|
White D. Object consolidation employing friction joining: US 6457629[P]. 2002.
|
Thomas W M, Norris I M, Staines D. G. et al. Friction stir welding-process developments and variant techniques[R]. The SME Summit. Oconomowoc, USA, 2005.
|
Lequeu R M, Ehrstrom J. C, Bron F, et al. High-Performance friction stir welded structures using advanced alloys[C]//Aeromat Conference. WA, Seattle, 2006: 85 − 91.
|
Threadgill P, Russell M. Friction welding of near net shape preforms in Ti-6Al-4V[C]//Proceedings of the 11th World Conference on Titanium. Japan, 2007: 3 − 7.
|
Dilip J, Rafi H K, Ram G. A new additive manufacturing process based on friction deposition[J]. Transactions of the Indian Institute of Metals, 2011, 64(1-2): 27 − 30. doi: 10.1007/s12666-011-0005-9
|
Baumann J A. Production of energy efficient preform structures (PEEPS)[R]. The Boeing Company, Chiago, USA, 2012.
|
Kandasamy K. Solid state joining using additive friction stir processing: US10105790[P]. 2018.
|
Griffiths R J, Perry M E J, Sietins J M, et al. A Perspective on solid-state additive manufacturing of aluminum matrix composites using meld[J]. Journal of Materials Engineering and Performance, 2018, 28(2): 648 − 656.
|
柯黎明, 邢丽, 刘鸽平. 搅拌摩擦焊工艺及其应用[J]. 焊接技术, 2000(2): 7 − 8. doi: 10.3969/j.issn.1002-025X.2000.02.004
Ke Liming, Xing Li, Liu Geping. Friction stir welding process and its applications[J]. Welding Technology, 2000(2): 7 − 8. doi: 10.3969/j.issn.1002-025X.2000.02.004
|
Su J Q, Nelson T W, Mishra R, et al. Microstructural investigation of friction stir welded 7050-T651 aluminium[J]. Acta Materialia, 2003, 51(3): 713 − 729. doi: 10.1016/S1359-6454(02)00449-4
|
Barenj R V. Influence of heat input conditions on microstructure evolution and mechanical properties of friction stir welded pure copper joints[J]. Transactions of the Indian Institute of Metals, 2016, 69(5): 1077 − 1085. doi: 10.1007/s12666-015-0624-7
|
Li J C, Huang Y X, Wang F F, et al. Enhanced strength and ductility of friction-stir-processed Mg-6Zn alloys via Y and Zr co-alloying[J]. Materials Science and Engineering, 2020, 773: 138877.1 − 138877.7.
|
Huang Y X, Huang T F, Wan L, et al. Material flow and mechanical properties of aluminum-to-steel self-riveting friction stir lap joints[J]. Journal of Materials Processing Technology, 2018, 263: 129 − 137.
|
Palanivel S, Nelaturu P, Glass B, et al. Friction stir additive manufacturing for high structural performance through microstructural control in an Mg based WE43 alloy[J]. Materials & Design, 2015, 65: 934 − 952.
|
Mao Y Q, Ke L M, Huang C P, et al. Formation characteristic, microstructure, and mechanical performances of aluminum-based components by friction stir additive manufacturing[J]. The International Journal of Advanced Manufacturing Technology, 2016, 83(9): 1637 − 1647.
|
Klopstock H, Neelands A R. An improved method of joining or welding metals: British patent specification 572789[P]. 1945-10-24.
|
Kalvala P R, Akram J, Tshibind A I, et al. Friction spot welding and friction seam welding: US20150360317A1 [P]. 2015-12-17.
|
Dilip J, Babu S, Rajan S V, et al. Use of friction surfacing for additive manufacturing[J]. Materials and Manufacturing Processes, 2013, 28(2): 189 − 194. doi: 10.1080/10426914.2012.677912
|
刘雪梅, 姚君山, 张彦华. 摩擦堆焊工艺参数的优化选择[J]. 焊接学报, 2004, 25(6): 99 − 102. doi: 10.3321/j.issn:0253-360X.2004.06.027
Liu Xuemei, Yao Junshan, Zhang Yanhua. Optimization for friction surfacing parameters[J]. Transactions of The China Welding Institution, 2004, 25(6): 99 − 102. doi: 10.3321/j.issn:0253-360X.2004.06.027
|
Fitseva V, Krohn H, Hanke S, et al. Friction surfacing of Ti-6Al-4V: Process characteristics and deposition behaviour at various rotational speeds[J]. Surface & Coatings Technology, 2015, 278: 56 − 63.
|
Seidi E, Miller S F. A novel approach to friction surfacing: experimental analysis of deposition from radial surface of a consumable tool[J]. Coatings, 2020, 10(11): 17.
|
Kramer D E, Pinheiro G A, Santos J F, et al. Deposit by friction surfacing and its applications[J]. Welding International, 2010, 24(6): 422 − 431. doi: 10.1080/09507110902844535
|
Suhuddin U, Mironov S, Krohn H, et al. Microstructural evolution during friction surfacing of dissimilar aluminum alloys[J]. Metallurgical and Materials Transactions A, 2012, 43(13): 5224 − 5231. doi: 10.1007/s11661-012-1345-8
|
Dilip J J S, Janaki Ram G D. Microstructures and properties of friction freeform fabricated borated stainless steel[J]. Journal of Materials Engineering and Performance, 2013, 22(10): 3034 − 3042.
|
Gandra J, Pereira D, Miranda R, et al. Deposition of AA6082-T6 over AA2024-T3 by friction surfacing-Mechanical and wear characterization[J]. Surface and Coatings Technology, 2013, 223: 32 − 40. doi: 10.1016/j.surfcoat.2013.02.023
|
Vitanov V, Voutchkov I, Bedford G. Neurofuzzy approach to process parameter selection for friction surfacing applications[J]. Surface and Coatings Technology, 2001, 140(3): 256 − 262. doi: 10.1016/S0257-8972(01)01128-8
|
Rahmati Z, Aval H J, Nourouzi S, et al. Microstructural, tribological, and texture analysis of friction surfaced Al-Mg-Cu clad on AA1050 alloy[J]. Surface & Coatings Technology, 2020, 397: 125980.
|
Nanci H, Kumar K, Jianqing S, et al. Additive friction stir deposition of Mg alloys using powder filler materials[C]//TMS Annual Meeting & Exhibition. Gewerbestrasse, Switzerland, 2016: 215-222.
|
Calvert J R. Microstructure and mechanical properties of WE43 alloy produced via additive friction stir technology[D]. Virginia: Virginia Polytechnic Institute and State University, 2015.
|
Rivera O, Allison P, Jordon J, et al. Microstructures and mechanical behavior of Inconel 625 fabricated by solid-state additive manufacturing[J]. Materials Science and Engineering:A, 2017, 69: 1 − 9.
|
Mukhopadhyay A, Saha P. Mechanical and microstructural characterization of aluminium powder deposit made by friction stir based additive manufacturing[J]. Journal of Materials Processing Technology, 2020, 281: 116648. doi: 10.1016/j.jmatprotec.2020.116648
|
Rivera O G, Allison P G, Jordon J B, et al. Microstructures and mechanical behavior of Inconel 625 fabricated by solid-state additive manufacturing[J]. Materials Science & Engineering, 2017, 694(10): 1 − 9.
|
Patel V, Li W, Xu Y. Stationary shoulder tool in friction stir processing: a novel low heat input tooling system for magnesium alloy[J]. Materials & Manufacturing Processes, 2019, 34(2): 177 − 182.
|
吴宝生. 增材式径向搅拌摩擦修复工艺研究[D]. 沈阳: 沈阳航空航天大学, 2019.
Wu Baosheng. Radial-additive friction stir repairing for exceeded tolerance hole[D]. Shenyang: Shenyang Aerospace University, 2019.
|
Mendes N, Neto P, Loureiro A, et al. Machines and control systems for friction stir welding: A review[J]. Materials & Design, 2016, 90: 256 − 65.
|
Franke D, Rudraraju S, Zinn M, et al. Understanding process force transients with application towards defect detection during friction stir welding of aluminum alloys[J]. Journal of Manufacturing Processes, 2020, 54: 251 − 261. doi: 10.1016/j.jmapro.2020.03.003
|
Meng X C, Huang Y X, Cao J, et al. Recent progress on control strategies for inherent issues in friction stir welding[J]. Progress in Materials Science, 2020: 100706.
|
Akram J, Puli R, Kalvala P R, et al. A novel weld transition joint by friction surfacing[J]. Manufacturing Letters, 2014, 2(4): 104 − 107. doi: 10.1016/j.mfglet.2014.07.004
|
Garcia D, Hartley W D, Rauch H A, et al. In situ investigation into temperature evolution and heat generation during additive friction stir deposition: A comparative study of Cu and Al-Mg-Si[J]. Additive Manufacturing, 2020, 34: 101386. doi: 10.1016/j.addma.2020.101386
|
[1] | WANG Jinqi, LI Junchen, ZHAO Yaobang, XIE Yuming, MENG Xiangchen, HUANG Yongxian. Formation and properties of aluminum-steel transition joints processed by friction stir additive manufacturing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2025, 46(2): 18-24. DOI: 10.12073/j.hjxb.20240905002 |
[2] | ZHENG Yong, WEI Lianfeng, YANG Canxiang, QIU Shaoyu, LI Huaxin, WANG Junjian, YANG Jianguo. Research progress and prospects of ODS steel welding technology[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(12): 117-128. DOI: 10.12073/j.hjxb.20231005001 |
[3] | ZHANG Zhifen, CHEN Shanben, ZHANG Yuming, WEN Guangrui. Research progress and prospect of welding intelligent monitoring technology[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(11): 10-20, 70. DOI: 10.12073/j.hjxb.20240707001 |
[4] | MIAO Yugang, LIU Ji, ZHAO Yuyang, LI Chunwang, WANG Ziran, ZHANG Benshun. Microstructure and corrosion resistance analysis of aluminum/steel "arc+ friction stir" hybrid additive manufacturing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(10): 41-48. DOI: 10.12073/j.hjxb.20220630001 |
[5] | LI Wenya, XING Cihao. Research progress and prospect of numerical simulation of deposit morphology control in solid-state cold spray additive manufacturing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(10): 1-11. DOI: 10.12073/j.hjxb.20230308002 |
[6] | CHEN Huizi, MENG Xiangchen, CHEN Jialin, XIE Yuming, ZHAO Yaobang, HUANG Yongxian. Aluminum alloy friction stir additive manufacturing technique with continuous feedstocks[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(11): 63-67. DOI: 10.12073/j.hjxb.20220710002 |
[7] | HONG Enhang, LIU Meihong, LI Zhenhua. Development of wire arc additive manufacturing robotic system based on open source slicing software for path planning[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(11): 65-69. DOI: 10.12073/j.hjxb.20210312004 |
[8] | FENG Jicai, WANG Houqin, ZHANG Binggang, WANG Ting. Research status and prospect of space welding technology[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(6): 107-112. |
[9] | HE Peng, JIAO Zhen, WANG Jun, LIN Tiesong. Research and application of joining technology at nanometer scale[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (2): 109-112. |
[10] | ZHANG Hua, LIN San bao, WU Lin, FENG Ji cai, LUAN Guo hong. Current progress and prospect of friction stir welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2003, (3): 91-96. |
1. |
申志康,李冬晓,孙中刚,马良超,刘小超,田艳红,郭伟,侯文涛,朴钟宇,杨新岐,李文亚. 搅拌摩擦沉积增材制造机理及展望:机遇与挑战. 机械工程学报. 2025(02): 56-85 .
![]() | |
2. |
江小辉,戴园城,郭维诚,杨天豪. 层间距对棒材送进式搅拌摩擦沉积增材2219铝合金组织及力学性能影响. 焊接学报. 2025(02): 102-111 .
![]() | |
3. |
王朝琴,石玗,王小荣. 基于双NURBS曲线的叶轮叶片工业机器人GMAW增材制造. 机床与液压. 2024(03): 17-21 .
![]() | |
4. |
王子健,孙舒蕾,肖寒,冉旭东,陈强,黄树海,赵耀邦,周利,黄永宪. 搅拌摩擦固相沉积增材制造研究现状. 材料导报. 2024(09): 166-181 .
![]() | |
5. |
胡雅楠,余欢,吴圣川,奥妮,阚前华,吴正凯,康国政. 基于机器学习的增材制造合金材料力学性能预测研究进展与挑战. 力学学报. 2024(07): 1892-1915 .
![]() |