Advanced Search
WEN Qi, LIU Jinglin, MENG Xiangchen, HUANG Yongxian, WAN Long. Development in key technique and equipment of friction stir additive manufacturing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(6): 1-10. DOI: 10.12073/j.hjxb.20210616004
Citation: WEN Qi, LIU Jinglin, MENG Xiangchen, HUANG Yongxian, WAN Long. Development in key technique and equipment of friction stir additive manufacturing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(6): 1-10. DOI: 10.12073/j.hjxb.20210616004

Development in key technique and equipment of friction stir additive manufacturing

More Information
  • Received Date: June 15, 2021
  • Available Online: May 29, 2022
  • Friction stir additive manufacturing (FSAM) is a novel solid phase additive manufacturing technology. Due to the advantages of avoiding the holes and cracks caused by material fusion and enhancing the mechanical properties of additive manufactured components, it is considered as a great break-through in metallic additive manufacturing. This article introduced the development history and characteristics of additive manufacturing, compared and analyzed the technical features of liquid phase and solid phase additive manufacturing, reviewed the basic conception, forming mechanism, developing trend, texture micro-structure evolution behavior, mechanical property of FSAM. Based on this, the article analyzed the equipment type and control system of FSAM in detail, discussed the influence of technical parameters, and emphatically analyzed the opportunities and challenges of FSAM in future development in application.
  • 冯小军. 快速制造技术[M]. 北京: 机械工业出版社, 2004.

    Feng Xiaojun. Rapid manufacturing technology[M]. Beijing: China Machine Press, 2004.
    Meng X C, Huang Y X, Cao J, et al. Recent progress on control strategies for inherent issues in friction stir welding[J]. Progress in Materials Science, 2020, 115: 100706.
    Kandasamy K. Solid state joining using additive friction stir processing: US10105790B2[P]. 2018.
    Palanivel S, Sidhar H, Mishra R S. Friction stir additive manufacturing: Route to high structural performance[J]. Jom, 2015, 67(3): 616 − 621. doi: 10.1007/s11837-014-1271-x
    Troysi F D, Brito P P. Development and characterization of an iron aluminide coating on mild steel substrate obtained by friction surfacing and heat treatment[J]. The International Journal of Advanced Manufacturing Technology, 2020, 111(9-10): 1 − 8.
    Rathee S, Srivastava M, Maheshwari S, et al. Friction based additive manufacturing technologies: principles for building in solid state, benefits, limitations, and applications[M]. Florida: CRC Press, 2018.
    Yu H Z, Mishra R S. Additive friction stir deposition: a deformation processing route to metal additive manufacturing[J]. Materials Research Letters, 2021, 9(2): 71 − 83. doi: 10.1080/21663831.2020.1847211
    王红军. 增材制造的研究现状与发展趋势[J]. 北京信息科技大学学报(自然科学版), 2014, 29(3): 20 − 24.

    Wang Hongjun. Research status and development tendency of additive manufacturing[J]. Journal of Beijing Information Science and Technology University, 2014, 29(3): 20 − 24.
    朱雪岩. 基于电磁感应加热技术的高温金属3D打印设备研制与工艺研究[D]. 宁波: 宁波大学, 2018.

    Zhu Xueyan. Development of equipment and process of high temperature metal 3D printing based on electromagnetic induction heating technology[D]. Ningbo: Ningbo University, 2018.
    Zhao C, Parab N D, Li X, et al. Critical instability at moving keyhole tip generates porosity in laser melting[J]. Science, 2020, 370(6520): 1080 − 1086. doi: 10.1126/science.abd1587
    White D. Object consolidation employing friction joining: US 6457629[P]. 2002.
    Thomas W M, Norris I M, Staines D. G. et al. Friction stir welding-process developments and variant techniques[R]. The SME Summit. Oconomowoc, USA, 2005.
    Lequeu R M, Ehrstrom J. C, Bron F, et al. High-Performance friction stir welded structures using advanced alloys[C]//Aeromat Conference. WA, Seattle, 2006: 85 − 91.
    Threadgill P, Russell M. Friction welding of near net shape preforms in Ti-6Al-4V[C]//Proceedings of the 11th World Conference on Titanium. Japan, 2007: 3 − 7.
    Dilip J, Rafi H K, Ram G. A new additive manufacturing process based on friction deposition[J]. Transactions of the Indian Institute of Metals, 2011, 64(1-2): 27 − 30. doi: 10.1007/s12666-011-0005-9
    Baumann J A. Production of energy efficient preform structures (PEEPS)[R]. The Boeing Company, Chiago, USA, 2012.
    Kandasamy K. Solid state joining using additive friction stir processing: US10105790[P]. 2018.
    Griffiths R J, Perry M E J, Sietins J M, et al. A Perspective on solid-state additive manufacturing of aluminum matrix composites using meld[J]. Journal of Materials Engineering and Performance, 2018, 28(2): 648 − 656.
    柯黎明, 邢丽, 刘鸽平. 搅拌摩擦焊工艺及其应用[J]. 焊接技术, 2000(2): 7 − 8. doi: 10.3969/j.issn.1002-025X.2000.02.004

    Ke Liming, Xing Li, Liu Geping. Friction stir welding process and its applications[J]. Welding Technology, 2000(2): 7 − 8. doi: 10.3969/j.issn.1002-025X.2000.02.004
    Su J Q, Nelson T W, Mishra R, et al. Microstructural investigation of friction stir welded 7050-T651 aluminium[J]. Acta Materialia, 2003, 51(3): 713 − 729. doi: 10.1016/S1359-6454(02)00449-4
    Barenj R V. Influence of heat input conditions on microstructure evolution and mechanical properties of friction stir welded pure copper joints[J]. Transactions of the Indian Institute of Metals, 2016, 69(5): 1077 − 1085. doi: 10.1007/s12666-015-0624-7
    Li J C, Huang Y X, Wang F F, et al. Enhanced strength and ductility of friction-stir-processed Mg-6Zn alloys via Y and Zr co-alloying[J]. Materials Science and Engineering, 2020, 773: 138877.1 − 138877.7.
    Huang Y X, Huang T F, Wan L, et al. Material flow and mechanical properties of aluminum-to-steel self-riveting friction stir lap joints[J]. Journal of Materials Processing Technology, 2018, 263: 129 − 137.
    Palanivel S, Nelaturu P, Glass B, et al. Friction stir additive manufacturing for high structural performance through microstructural control in an Mg based WE43 alloy[J]. Materials & Design, 2015, 65: 934 − 952.
    Mao Y Q, Ke L M, Huang C P, et al. Formation characteristic, microstructure, and mechanical performances of aluminum-based components by friction stir additive manufacturing[J]. The International Journal of Advanced Manufacturing Technology, 2016, 83(9): 1637 − 1647.
    Klopstock H, Neelands A R. An improved method of joining or welding metals: British patent specification 572789[P]. 1945-10-24.
    Kalvala P R, Akram J, Tshibind A I, et al. Friction spot welding and friction seam welding: US20150360317A1 [P]. 2015-12-17.
    Dilip J, Babu S, Rajan S V, et al. Use of friction surfacing for additive manufacturing[J]. Materials and Manufacturing Processes, 2013, 28(2): 189 − 194. doi: 10.1080/10426914.2012.677912
    刘雪梅, 姚君山, 张彦华. 摩擦堆焊工艺参数的优化选择[J]. 焊接学报, 2004, 25(6): 99 − 102. doi: 10.3321/j.issn:0253-360X.2004.06.027

    Liu Xuemei, Yao Junshan, Zhang Yanhua. Optimization for friction surfacing parameters[J]. Transactions of The China Welding Institution, 2004, 25(6): 99 − 102. doi: 10.3321/j.issn:0253-360X.2004.06.027
    Fitseva V, Krohn H, Hanke S, et al. Friction surfacing of Ti-6Al-4V: Process characteristics and deposition behaviour at various rotational speeds[J]. Surface & Coatings Technology, 2015, 278: 56 − 63.
    Seidi E, Miller S F. A novel approach to friction surfacing: experimental analysis of deposition from radial surface of a consumable tool[J]. Coatings, 2020, 10(11): 17.
    Kramer D E, Pinheiro G A, Santos J F, et al. Deposit by friction surfacing and its applications[J]. Welding International, 2010, 24(6): 422 − 431. doi: 10.1080/09507110902844535
    Suhuddin U, Mironov S, Krohn H, et al. Microstructural evolution during friction surfacing of dissimilar aluminum alloys[J]. Metallurgical and Materials Transactions A, 2012, 43(13): 5224 − 5231. doi: 10.1007/s11661-012-1345-8
    Dilip J J S, Janaki Ram G D. Microstructures and properties of friction freeform fabricated borated stainless steel[J]. Journal of Materials Engineering and Performance, 2013, 22(10): 3034 − 3042.
    Gandra J, Pereira D, Miranda R, et al. Deposition of AA6082-T6 over AA2024-T3 by friction surfacing-Mechanical and wear characterization[J]. Surface and Coatings Technology, 2013, 223: 32 − 40. doi: 10.1016/j.surfcoat.2013.02.023
    Vitanov V, Voutchkov I, Bedford G. Neurofuzzy approach to process parameter selection for friction surfacing applications[J]. Surface and Coatings Technology, 2001, 140(3): 256 − 262. doi: 10.1016/S0257-8972(01)01128-8
    Rahmati Z, Aval H J, Nourouzi S, et al. Microstructural, tribological, and texture analysis of friction surfaced Al-Mg-Cu clad on AA1050 alloy[J]. Surface & Coatings Technology, 2020, 397: 125980.
    Nanci H, Kumar K, Jianqing S, et al. Additive friction stir deposition of Mg alloys using powder filler materials[C]//TMS Annual Meeting & Exhibition. Gewerbestrasse, Switzerland, 2016: 215-222.
    Calvert J R. Microstructure and mechanical properties of WE43 alloy produced via additive friction stir technology[D]. Virginia: Virginia Polytechnic Institute and State University, 2015.
    Rivera O, Allison P, Jordon J, et al. Microstructures and mechanical behavior of Inconel 625 fabricated by solid-state additive manufacturing[J]. Materials Science and Engineering:A, 2017, 69: 1 − 9.
    Mukhopadhyay A, Saha P. Mechanical and microstructural characterization of aluminium powder deposit made by friction stir based additive manufacturing[J]. Journal of Materials Processing Technology, 2020, 281: 116648. doi: 10.1016/j.jmatprotec.2020.116648
    Rivera O G, Allison P G, Jordon J B, et al. Microstructures and mechanical behavior of Inconel 625 fabricated by solid-state additive manufacturing[J]. Materials Science & Engineering, 2017, 694(10): 1 − 9.
    Patel V, Li W, Xu Y. Stationary shoulder tool in friction stir processing: a novel low heat input tooling system for magnesium alloy[J]. Materials & Manufacturing Processes, 2019, 34(2): 177 − 182.
    吴宝生. 增材式径向搅拌摩擦修复工艺研究[D]. 沈阳: 沈阳航空航天大学, 2019.

    Wu Baosheng. Radial-additive friction stir repairing for exceeded tolerance hole[D]. Shenyang: Shenyang Aerospace University, 2019.
    Mendes N, Neto P, Loureiro A, et al. Machines and control systems for friction stir welding: A review[J]. Materials & Design, 2016, 90: 256 − 65.
    Franke D, Rudraraju S, Zinn M, et al. Understanding process force transients with application towards defect detection during friction stir welding of aluminum alloys[J]. Journal of Manufacturing Processes, 2020, 54: 251 − 261. doi: 10.1016/j.jmapro.2020.03.003
    Meng X C, Huang Y X, Cao J, et al. Recent progress on control strategies for inherent issues in friction stir welding[J]. Progress in Materials Science, 2020: 100706.
    Akram J, Puli R, Kalvala P R, et al. A novel weld transition joint by friction surfacing[J]. Manufacturing Letters, 2014, 2(4): 104 − 107. doi: 10.1016/j.mfglet.2014.07.004
    Garcia D, Hartley W D, Rauch H A, et al. In situ investigation into temperature evolution and heat generation during additive friction stir deposition: A comparative study of Cu and Al-Mg-Si[J]. Additive Manufacturing, 2020, 34: 101386. doi: 10.1016/j.addma.2020.101386
  • Related Articles

    [1]WANG Jinqi, LI Junchen, ZHAO Yaobang, XIE Yuming, MENG Xiangchen, HUANG Yongxian. Formation and properties of aluminum-steel transition joints processed by friction stir additive manufacturing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2025, 46(2): 18-24. DOI: 10.12073/j.hjxb.20240905002
    [2]ZHENG Yong, WEI Lianfeng, YANG Canxiang, QIU Shaoyu, LI Huaxin, WANG Junjian, YANG Jianguo. Research progress and prospects of ODS steel welding technology[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(12): 117-128. DOI: 10.12073/j.hjxb.20231005001
    [3]ZHANG Zhifen, CHEN Shanben, ZHANG Yuming, WEN Guangrui. Research progress and prospect of welding intelligent monitoring technology[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(11): 10-20, 70. DOI: 10.12073/j.hjxb.20240707001
    [4]MIAO Yugang, LIU Ji, ZHAO Yuyang, LI Chunwang, WANG Ziran, ZHANG Benshun. Microstructure and corrosion resistance analysis of aluminum/steel "arc+ friction stir" hybrid additive manufacturing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(10): 41-48. DOI: 10.12073/j.hjxb.20220630001
    [5]LI Wenya, XING Cihao. Research progress and prospect of numerical simulation of deposit morphology control in solid-state cold spray additive manufacturing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(10): 1-11. DOI: 10.12073/j.hjxb.20230308002
    [6]CHEN Huizi, MENG Xiangchen, CHEN Jialin, XIE Yuming, ZHAO Yaobang, HUANG Yongxian. Aluminum alloy friction stir additive manufacturing technique with continuous feedstocks[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(11): 63-67. DOI: 10.12073/j.hjxb.20220710002
    [7]HONG Enhang, LIU Meihong, LI Zhenhua. Development of wire arc additive manufacturing robotic system based on open source slicing software for path planning[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(11): 65-69. DOI: 10.12073/j.hjxb.20210312004
    [8]FENG Jicai, WANG Houqin, ZHANG Binggang, WANG Ting. Research status and prospect of space welding technology[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(6): 107-112.
    [9]HE Peng, JIAO Zhen, WANG Jun, LIN Tiesong. Research and application of joining technology at nanometer scale[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (2): 109-112.
    [10]ZHANG Hua, LIN San bao, WU Lin, FENG Ji cai, LUAN Guo hong. Current progress and prospect of friction stir welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2003, (3): 91-96.
  • Cited by

    Periodical cited type(5)

    1. 申志康,李冬晓,孙中刚,马良超,刘小超,田艳红,郭伟,侯文涛,朴钟宇,杨新岐,李文亚. 搅拌摩擦沉积增材制造机理及展望:机遇与挑战. 机械工程学报. 2025(02): 56-85 .
    2. 江小辉,戴园城,郭维诚,杨天豪. 层间距对棒材送进式搅拌摩擦沉积增材2219铝合金组织及力学性能影响. 焊接学报. 2025(02): 102-111 . 本站查看
    3. 王朝琴,石玗,王小荣. 基于双NURBS曲线的叶轮叶片工业机器人GMAW增材制造. 机床与液压. 2024(03): 17-21 .
    4. 王子健,孙舒蕾,肖寒,冉旭东,陈强,黄树海,赵耀邦,周利,黄永宪. 搅拌摩擦固相沉积增材制造研究现状. 材料导报. 2024(09): 166-181 .
    5. 胡雅楠,余欢,吴圣川,奥妮,阚前华,吴正凯,康国政. 基于机器学习的增材制造合金材料力学性能预测研究进展与挑战. 力学学报. 2024(07): 1892-1915 .

    Other cited types(4)

Catalog

    Article views (989) PDF downloads (235) Cited by(9)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return