Advanced Search
ZHENG Yong, WEI Lianfeng, YANG Canxiang, QIU Shaoyu, LI Huaxin, WANG Junjian, YANG Jianguo. Research progress and prospects of ODS steel welding technology[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(12): 117-128. DOI: 10.12073/j.hjxb.20231005001
Citation: ZHENG Yong, WEI Lianfeng, YANG Canxiang, QIU Shaoyu, LI Huaxin, WANG Junjian, YANG Jianguo. Research progress and prospects of ODS steel welding technology[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(12): 117-128. DOI: 10.12073/j.hjxb.20231005001

Research progress and prospects of ODS steel welding technology

More Information
  • Received Date: October 04, 2023
  • Available Online: October 28, 2024
  • ODS steel is considered as one of the most promising candidate materials for the next-generation nuclear reactor cladding due to its excellent high-temperature mechanical properties, irradiation resistance, and thermal creep resistance. The excellent performance of ODS steel is mainly attributed to the dispersed nano oxide particles in the matrix. Inhibiting and avoiding the precipitation, growth, and agglomeration of nano oxides during the welding process is the most important basis for selecting welding methods. However, the current ODS steel structure for nuclear fuel elements (large aspect ratio cladding) and extreme service conditions (high temperature, high pressure, strong irradiation) require higher technical indicators for welding methods. Currently, welding technology has become the most important factor restricting ODS steel as a cladding material for nuclear fuel elements. Based on this, the characteristics of different welding methods including fusion welding, brazing, and pressure welding, as well as the evolution of the microstructure, especially nano oxide particles, and mechanical properties of welded joints when using different welding methods to weld ODS steel, are elaborated in detail in this paper. Through comparison and summary, it is found that although both fusion welding and brazing are suitable for welding ultra long thin-walled pipe fittings, fusion welding can easily lead to grain growth and aggregation of nano oxides at the joint, while in brazing welding, the heterogeneous interface formed by the introduction of brazing material will crack under neutron irradiation. In comparison, pressure welding can obtain welded joints with higher strength. Finally, the future development direction of welding methods is also discussed in the paper.

  • [1]
    王晓丁, 李太斌, 孙磊, 等. 低碳经济下我国新能源产业的现状及展望[J]. 新型工业化, 2021, 11(5): 20 − 21.

    Wang Xiaoding, Li Taibin, Sun Lei, et al. The current situation and prospects of China's new energy industry under the low carbon economy[J]. The Journal of New Industrialization, 2021, 11(5): 20 − 21.
    [2]
    郭天超, 孙善星, 张文娟, 等. “碳中和”目标下核能积极有序发展策略研究[J]. 中国能源, 2021, 43(5): 44 − 50. doi: 10.3969/j.issn.1003-2355.2021.05.007

    Guo Tianchao, Sun Shanxing, Zhang Wenjuan, et al. Research on the active and orderly development strategy of nuclear energy under the goal of "Carbon Neutrality"[J]. China Energy, 2021, 43(5): 44 − 50. doi: 10.3969/j.issn.1003-2355.2021.05.007
    [3]
    李明洋. 通过调控纳米析出相制备新型核聚变堆用热沉材料和结构材料[D]. 北京: 北京科技大学, 2021.

    Li Mingyang. Preparation of novel heat sink materials and structural materials for nuclear fusion reactors by regulating nanoprecipitates[D]. Beijing: Beijing University of Science and Technology, 2021.
    [4]
    程心雨, 刘荣正, 刘马林, 等. 碳化物陶瓷材料在核反应堆领域应用现状[J]. 科学通报, 2021, 66(24): 3154 − 3170.

    Cheng Xinyu, Liu Rongzheng, Liu Malin, et al. Application status of carbide ceramic materials in the field of nuclear reactors[J]. Science Bulletin, 2021, 66(24): 3154 − 3170.
    [5]
    Hoffelner W. Damage assessment in structural metallic materials for advanced nuclear plants[J]. Journal of Materials Science, 2010, 45(9): 2247 − 2257. doi: 10.1007/s10853-010-4236-7
    [6]
    Murty K L, Charit I. Structural materials for Gen-IV nuclear reactors: challenges and opportunities[J]. Journal of Nuclear Materials, 2008, 383(1-2): 189 − 195. doi: 10.1016/j.jnucmat.2008.08.044
    [7]
    Kurtz R J, Odette G R. Overview of reactor systems and operational environments for structural materials in fusion reactors[M]. 2019.
    [8]
    Kim T K, Noh S, Kang S H, et al. Current status and future prospective of advanced radiation resistant oxide dispersion strengthened steel (ARROS) development for nuclear reactor system applications[J]. Nuclear Engineering & Technology, 2016, 48(2): 572 − 594. doi: 10.1016/j.net.2015.12.005
    [9]
    Susila P, Sturm D, Heilmaier M, et al. Microstructural studies on nanocrystalline oxide dispersion strengthened austenitic (Fe–18Cr–8Ni–2W–0.25Y2O3) alloy synthesized by high energy ball milling and vacuum hot pressing[J]. Journal of Materials Science, 2010, 45(17): 4858 − 4865. doi: 10.1007/s10853-010-4264-3
    [10]
    Zinkle S J, Boutard J L, Hoelzer D T, et al. Development of next generation tempered and ODS reduced activation ferritic/martensitic steels for fusion energy applications[J]. Nuclear Fusion, 2017, 57(9): 1 − 17. doi: 10.1088/1741-4326/57/9/092005
    [11]
    Stan T, Wu Y, Ciston J, et al. Characterization of polyhedral nano-oxides and helium bubbles in an annealed nanostructured ferritic alloy[J]. Acta Materialia, 2020, 183: 484 − 492. doi: 10.1016/j.actamat.2019.10.045
    [12]
    Yvon P, Flem M L, Cabet C, et al. Structural materials for next generation nuclear systems: challenges and the path forward[J]. Nuclear Engineering and Design, 2015, 294: 161 − 169. doi: 10.1016/j.nucengdes.2015.09.015
    [13]
    张静, 韩文妥, 常永勤, 等. ODS钢搅拌摩擦焊接头的微观组织及其高温力学性能[J]. 焊接学报, 2015, 36(10): 9 − 11.

    Zhang Jing, Han Wentuo, Chang Yongqin, et al. Microstructure and mechanical properties in friction stir welded nanostructured oxide dispersion strengthened steel joint[J]. Transactions of the China Welding Institution, 2015, 36(10): 9 − 11.
    [14]
    魏世同, 刘琛, 贾昕, 等. 核用ODS钢电阻点焊性能[J]. 焊接学报, 2022, 43(9): 82 − 85. doi: 10.12073/j.hjxb.20210928001

    Wei Shitong, Liu Chen, Jia Xin, et al. Resistance spot weldability of nuclear ODS steel[J]. Transactions of the China Welding Institution, 2022, 43(9): 82 − 85. doi: 10.12073/j.hjxb.20210928001
    [15]
    雷玉成, 龚晨诚, 罗雅, 等. Zr对ODS合金MGH956原位合金化TIG焊接头组织与性能的影响[C]//中国机械工程学会焊接学会第十八次全国焊接学术会议.

    Lei Yucheng, Gong Chencheng, Luo Ya, et al. Effect of Zr on the microstructure and properties of in-situ alloying TIG welded joints of ODS alloy MGH956[C]//The 18th National Welding Academic Conference of the Welding Society of the Chinese Society of Mechanical Engineering.
    [16]
    Zhu Q, Lei Y C, Wang Y, et al. Effects of arc-ultrasonic on pores distribution and tensile property in TIG welding joints of MGH956 alloy[J]. Fusion Engineering & Design, 2014, 89(12): 2964 − 2970. doi: 10.1016/j.fusengdes.2014.08.012
    [17]
    王维东. 2205双相不锈钢钢管激光焊焊接工艺研究[D]. 西安: 西安石油大学, 2020.

    Wang Weidong. Research on laser welding process of 2205 duplex stainless steel pipe [D]. Xi'an: Xi'an Shiyou University, 2020.
    [18]
    Liang S, Lei Y, Zhu Q. The filler powders laser welding of ODS ferritic steels[J]. Journal of Nuclear Materials, 2015, 456: 206 − 210. doi: 10.1016/j.jnucmat.2014.09.041
    [19]
    Fu J, Richardson I, Hermans M. Microstructure study of pulsed laser beam welded oxide dispersion-strengthened (ODS) eurofer steel[J]. Micromachines, 2021, 12(6): 629. doi: 10.3390/mi12060629
    [20]
    Lemmen H J K, Sudmeijer K J, Richardson I M, et al. Laser beam welding of an oxide dispersion strengthened super alloy[J]. Journal of Materials Science, 2007, 42(13): 5286 − 5295. doi: 10.1007/s10853-006-0168-7
    [21]
    Lindau R, Klimenkov M, Jantsch U, et al. Mechanical and microstructural characterization of electron beam welded reduced activation oxide dispersion strengthened-Eurofer steel[J]. Journal of Nuclear Materials, 2011, 416(1-2): 22 − 29. doi: 10.1016/j.jnucmat.2011.01.025
    [22]
    Commin L, Rieth M, Widak V, et al. Characterization of ODS (Oxide Dispersion Strengthened) Eurofer/Eurofer dissimilar electron beam welds[J]. Journal of Nuclear Materials, 2013, 442(1-3): S552 − S556. doi: 10.1016/j.jnucmat.2012.11.019
    [23]
    Havlík P, Šohaj P. Electron beam welds of austenitic stainless steels and ods steels[C]//Conference Welding, 2013.
    [24]
    Jan V, Cupera J, Sohaj P, et al. Microstructure evaluation of heterogeneous electron beam weld between stabilised austenitic and ODS ferritic steel[J]. Materials Science Forum, 2017, 891: 185 − 189. doi: 10.4028/www.scientific.net/MSF.891.185
    [25]
    Kavithaa S, Shaji S G, Bhandiwad V. Electron beam welding of oxide dispersion strengthened 9 Cr martensitic steel−an experimental and theoretical perspective[J]. Materials Today: Proceedings, 2020, 22(7): 2509 − 2519. doi: 10.1016/j.matpr.2020.03.379
    [26]
    Gao J, Song P, Huang Y J, et al. Effects of neutron irradiation on 12Cr–6Al-ODS steel with electron-beam weld line[J]. Journal of Nuclear Materials, 2019, 524: 1 − 8. doi: 10.1016/j.jnucmat.2019.06.028
    [27]
    Khan T I, Al-Badri A. Reactive brazing of ceria to an ODS ferritic stainless steel[J]. Journal of Materials Science, 2003, 38(11): 2483 − 2488. doi: 10.1023/A:1023917504820
    [28]
    Oono N, Noh S, Iwata N, et al. Microstructures of brazed and solid-state diffusion bonded joints of tungsten with oxide dispersion strengthened steel[J]. Journal of Nuclear Materials, 2011, 417(1-3): 253 − 256. doi: 10.1016/j.jnucmat.2011.04.004
    [29]
    Kalin B A, Fedotov V T, Sevrjukov O N, et al. Development of brazing foils to join monocrystalline tungsten alloys with ODS-EUROFER steel[J]. Journal of Nuclear Materials, 2007, 367-370: 1218 − 1222. doi: 10.1016/j.jnucmat.2007.03.222
    [30]
    Chen Y T, Li X F, Hua P, et al. Microstructure evolution and mechanical properties of WMA956 joints by brazing[J]. International Journal of Modern Physics B, 2020, 34(5): 1 − 11. doi: 10.1142/S0217979220500253
    [31]
    Bagnold S A. Pressure welding: US2707889[P]. 1955.
    [32]
    Kapil A, Sharma A. Magnetic pulse welding: an efficient and environmentally friendly multi-material joining technique[J]. Journal of Cleaner Production, 2015, 100: 35 − 58. doi: 10.1016/j.jclepro.2015.03.042
    [33]
    Lee J G, Park J J, Lee M K, et al. End closure joining of ferritic-martensitic and oxide-dispersion strengthened steel cladding tubes by magnetic pulse welding[J]. Metallurgical & Materials Transactions A, 2015, 46(7): 3132 − 3139. doi: 10.1007/s11661-015-2905-5
    [34]
    Corpace F, Monnier A, Grall J, et al. Resistance upset welding of ODS steel fuel claddings - evolution of a process parameter range based on metallurgical observations[J]. Metals, 2017, 7(9): 1 − 11. doi: 10.3390/met7090333
    [35]
    Seki M, Hirako K, Kono S, et al. Pressurized resistance welding technology development in 9Cr-ODS martensitic steels[J]. Journal of Nuclear Materials, 2004, 329-333(Part-B): 1534 − 1538. doi: 10.1016/j.jnucmat.2004.04.172
    [36]
    Nikitina A A, Ageev V S, Chukanov A P, et al. R&D of ferritic-martensitic steel EP450 ODS for fuel pin claddings of prospective fast reactors[J]. Journal of Nuclear Materials, 2012, 428(1-3): 117 − 124. doi: 10.1016/j.jnucmat.2012.02.022
    [37]
    Doyen O, Gloannec B L, Deschamps A, et al. Ferritic and martensitic ODS steel resistance upset welding of fuel claddings: weldability assessment and metallurgical effects[J]. Journal of Nuclear Materials, 2019, 518: 326 − 333. doi: 10.1016/j.jnucmat.2019.03.013
    [38]
    Li W, Vairis A, Preuss M, et al. Linear and rotary friction welding review[J]. International Materials Reviews, 2016, 61(2): 71 − 100. doi: 10.1080/09506608.2015.1109214
    [39]
    Uwaba T, Ukai S, Nakai T, et al. Properties of friction welds between 9Cr-ODS martensitic and ferritic-martensitic steels[J]. Journal of Nuclear Materials, 2007, 367(part-PB): 1213 − 1217. doi: 10.1016/j.jnucmat.2007.03.221
    [40]
    Wu Q, Li M, Guo Y, et al. Microstructural evolution and mechanical properties of friction stir welded 12Cr-ODS steel[J]. Nuclear Materials and Energy, 2020, 25(12): 100804. doi: 10.1016/j.nme.2020.100804
    [41]
    Dawson H, Serrano M, Cater S, et al. Residual stress distribution in friction stir welded ODS steel measured by neutron diffraction[J]. Journal of Materials Processing Technology, 2017, 246: 305 − 312. doi: 10.1016/j.jmatprotec.2017.03.013
    [42]
    Chen C L, Tatlock G J, Jones A R. Microstructural evolution in friction stir welding of nanostructured ODS alloys[J]. Journal of Alloys & Compounds, 2009, 504(Supp-S1): S460 − S466. doi: 10.1016/j.jallcom.2010.02.192
    [43]
    Han W, Liu P, Yi X, et al. Impact of friction stir welding on recrystallization of oxide dispersion strengthened ferritic steel[J]. Journal of Materials Science & Technology, 2018, 34(1): 209 − 213. doi: 10.1016/j.jmst.2017.11.032
    [44]
    Fu H, Chai Z, Han S, et al. Effect of post-weld heat treatment on a friction stir welded joint between 9Cr-ODS and CLF-1 steel[J]. Materials Characterization, 2022, 187: 111868(1 − 9). doi: https://doi.org/10.1016/j.matchar.2022.111868
    [45]
    Han W T, Tsuda N, Chen D S, et al, Effects of rotation speed on microstructure and hardness of friction stir welded ODS ferritic steel[C]//Proceedings of the 1st International Joint Symposium on Joining and Welding. 2013, 6-8: 81 − 85.
    [46]
    Sunilkumar D, Muthukumaran S, Vasudevan M, et al. Tool rotational speed variant response on the evolution of microstructure and its significance on mechanical properties of friction stir welded 9Cr-1Mo steel - Science Direct[J]. Journal of Materials Processing Technology, 2020, 278: 116536. doi: 10.1016/j.jmatprotec.2019.116536
    [47]
    Dawson H, Serrano M, Hernandez R, et al. Mechanical properties and fracture behaviour of ODS steel friction stir welds at variable temperatures[J]. Materials Science & Engineering: A, 2017, 693(2): 84 − 92. doi: 10.1016/j.msea.2017.03.090
    [48]
    Dawson H, Serrano M, Cater S, et al. Characterization of ODS steel friction stir welds and their abnormal grain growth behaviour[J]. Fusion Engineering and Design, 2018, 135(Part A): 174 − 182. doi: https://doi.org/10.1016/j.fusengdes.2018.07.021
    [49]
    Chen C L, Richter A, Kogler R, et al. Ion-irradiation effects on dissimilar friction stir welded joints between ODS alloy and ferritic stainless steel[J]. Journal of Alloys & Compounds, 2014, 615: S448 − S453. doi: 10.1016/j.jallcom.2013.11.123
    [50]
    Getto E, Baker B, Tobie B, et al. Effect of friction stir welding and self-ion irradiation on dispersoid evolution in oxide dispersion strengthened steel MA956 up to 25 dpa[J]. Journal of Nuclear Materials, 2018, 515: 407 − 419. doi: 10.1016/j.jnucmat.2018.12.040
    [51]
    Sittel W, Basuki W W, Aktaa J, et al. Diffusion bonding of the oxide dispersion strengthened steel PM2000[J]. Journal of Nuclear Materials, 2013, 443(1-3): 78 − 83. doi: 10.1016/j.jnucmat.2013.06.048
    [52]
    Noh S, Kimura A, Kim T K, et al. Diffusion bonding of 9Cr ODS ferritic/martensitic steel with a phase transformation[J]. Fusion Engineering and Design, 2014, 89(7-8): 1746 − 1750. doi: 10.1016/j.fusengdes.2013.12.023
    [53]
    Fu H Y, Nagasaka T, Muroga T, et al. Microstructural characterization of a diffusion-bonded joint for 9Cr-ODS and JLF-1 reduced activation ferritic/martensitic steels[J]. Fusion Engineering and Design, 2014, 89(7-8): 1658 − 1663. doi: 10.1016/j.fusengdes.2014.02.055
    [54]
    Noh S, Kasada R, Kimura A, et al. Solid-state diffusion bonding of high-Cr ODS ferritic steel[J]. Acta Materialia, 2011, 59(8): 3196 − 3204. doi: 10.1016/j.actamat.2011.01.059
    [55]
    Noh S, Kim B, Kasada R, et al. Diffusion bonding between ODS ferritic steel and F82H steel for fusion applications[J]. Journal of Nuclear Materials, 2012, 426(1-3): 208 − 213. doi: https://doi.org/10.1016/j.jnucmat.2012.02.024
    [56]
    Noh Sanghoon, Kimura A, et al. Transient liquid phase bonding of ODS ferritic steel with a physical vapor deposited boron thin layer[J]. Journal of Nuclear Materials, 2020, 529: 151888. doi: 10.1016/j.jnucmat.2019.151888
    [57]
    Noh S, Kasada R, Oono N, et al. Evaluation of microstructure and mechanical properties of liquid phase diffusion bonded ODS steels[J]. Fusion Engineering and Design, 2010, 85(7-9): 1033 − 1037. doi: 10.1016/j.fusengdes.2010.01.001
    [58]
    Hu Z Y, Zhang Z H, Cheng X W, et al. A review of multi-physical fields induced phenomena and effects in spark plasma sintering: Fundamentals and applications[J]. Materials & Design, 2020, 191: 108662. doi: 10.1016/j.matdes.2020.108662
    [59]
    Fu J, Brouwer J C, Richardson I M, et al. Joining of oxide dispersion strengthened Eurofer steel via spark plasma sintering[J]. Materials Letters, 2019, 256: 126670.1 − 126670.4. doi: 10.1016/j.matlet.2019.126670
    [60]
    Naimi F, Niepce J C, Ariane M, et al. Joining of oxide dispersion-strengthened steel using spark plasma sintering[J]. Metals, 2020, 10(8): 1 − 10. doi: 10.3390/met10081040
  • Cited by

    Periodical cited type(2)

    1. 刘伟,张鑫,李素丽,李小龙. 基于焦耳热增材制造过程的温度场分析研究. 焊接技术. 2023(10): 1-4 .
    2. 张鑫,刘伟,张伟博,李小龙. 金属3D打印焦耳热最大变形量数值分析. 焊接技术. 2023(11): 1-5 .

    Other cited types(0)

Catalog

    Article views (150) PDF downloads (99) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return