Advanced Search
WANG Rui, HU Yunlei, LIU Weipeng, LI Haitao. Defect detection of weld X-ray image based on edge AI[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(1): 79-84. DOI: 10.12073/j.hjxb.20210516001
Citation: WANG Rui, HU Yunlei, LIU Weipeng, LI Haitao. Defect detection of weld X-ray image based on edge AI[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(1): 79-84. DOI: 10.12073/j.hjxb.20210516001

Defect detection of weld X-ray image based on edge AI

More Information
  • Received Date: May 15, 2021
  • Accepted Date: January 27, 2022
  • Available Online: January 27, 2022
  • In order to improve the practicability of deep learning in X-ray weld defect detection and reduce the hardware requirements of defect detection task, the YOLO-M network with merely 3.6 M parameters is proposed. The amount of network calculation is reduced by introducing a lightweight inverse residual structure into the network; the multi-scale prediction mechanism is used to predict different defect characteristics by network layer; the positive sample information of the image is amplified across the grid to speed up the convergence speed in the process of network training. The network is not only applied to traditional computers, but also tested in the ultra-low power edge artificial intelligence chip Kanzhi K210. The results show that the detection accuracy of the proposed method is 93.5% and the detection speed is 11 fps. This method has good detection accuracy and greatly reduces the cost of defect quality inspection.
  • 迟大钊, 马子奇, 程怡, 等. 不等厚板搭接焊缝缺陷数字X射线检测[J]. 焊接学报, 2019, 40(11): 45 − 48. doi: 10.12073/j.hjxb.2019400286

    Chi Dazhao, Ma Ziqi, Cheng Yi, et al. Digital X-ray detection of lap weld defects in unequal-thickness plates[J]. Transactions of the China Welding Institution, 2019, 40(11): 45 − 48. doi: 10.12073/j.hjxb.2019400286
    Yan Z H, Xu H, Huang P F. Multi-scale multi-intensity defect detection in ray image of weld bead[J]. NDT & E International, 2020, 116: 102342 − 102357.
    Hou W, Zhang D, Wei Y, et al. Review on computer aided weld defect detection from radiography images[J]. Applied Sciences, 2020, 10(5): 1878 − 1893. doi: 10.3390/app10051878
    修延飞, 李海超, 胡广泽, 等. 一种用于穿孔塞焊焊缝特征提取的视觉识别算法[J]. 焊接学报, 2020, 41(2): 75 − 79, 86.

    Xiu Yanfei, Li Haichao, Hu Guangze, et al. A visual recognition algorithm for feature extraction of perforated plug weld[J]. Transactions of the China Welding Institution, 2020, 41(2): 75 − 79, 86.
    刘涵, 郭润元. 基于X射线图像和卷积神经网络的石油钢管焊缝缺陷检测与识别[J]. 仪器仪表学报, 2018, 39(4): 247 − 256.

    Liu Han, Guo Runyuan. Detection and recognition of weld defects of petroleum steel pipe based on X-ray image and convolutional neural network[J]. Chinese Journal of Scientific Instrument, 2018, 39(4): 247 − 256.
    樊丁, 胡桉得, 黄健康, 等. 基于改进卷积神经网络的管焊缝X射线图像缺陷识别方法[J]. 焊接学报, 2020, 41(1): 7 − 11.

    Fan Ding, Hu Yude, Huang Jiankang, et al. X-ray image defect recognition method of pipe weld based on improved convolutional neural network[J]. Transactions of the China Welding Institution, 2020, 41(1): 7 − 11.
    谢经明, 刘默耘, 何文卓, 等. 基于轻量化YOLO的X射线焊缝图像信息检测[J]. 华中科技大学学报(自然科学版), 2021, 49(1): 1 − 5.

    Xie Jingming, Liu Moyun, He Wenzhuo, et al. X-ray weld image information detection based on lightweight YOLO[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2021, 49(1): 1 − 5.
    Ren S, He K, Girshick R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 39(6): 1137 − 1149.
    鞠默然, 罗海波, 王仲博, 等. 改进的YOLO V3算法及其在小目标检测中的应用[J]. 光学学报, 2019, 39(7): 253 − 260.

    Ju Moran, Luo Haibo, Wang Zhongbo, et al. Improved YOLO V3 algorithm and its application in small target detection[J]. Journal of Optics, 2019, 39(7): 253 − 260.
    Nacereddine N, Goumeidane A B, Ziou D. Unsupervised weld defect classification in radiographic images using multivariate generalized Gaussian mixture model with exact computation of mean and shape parameters[J]. Computers in Industry, 2019, 108: 132 − 149. doi: 10.1016/j.compind.2019.02.010
    Hou D, Miao Z, Xing H, et al. Exploiting low dimensional features from the MobileNets for remote sensing image retrieval[J]. Earth Science Informatics, 2020, 13(4): 1437 − 1443. doi: 10.1007/s12145-020-00484-3
    Wang X, Han Y, Wang C, et al. In-Edge AI: Intelligentizing mobile edge computing, caching and communication by federated learning[J]. IEEE Network, 2019, 33(5): 156 − 165. doi: 10.1109/MNET.2019.1800286
    Zheng Z, Wang P, Liu W, et al. Distance-IoU loss: Faster and better learning for bounding box regression[C]//Association for the Advancement of Artificial Intelligence. Proceedings of the AAAI Conference on Artificial Intelligence. New York, USA, 2020, 34(7): 12993−13000.
    Mery D, Riffo V, Zscherpel U, et al. GDXray: The database of X-ray images for nondestructive testing[J]. Journal of Nondestructive Evaluation, 2015, 34(4): 1 − 12.
  • Cited by

    Periodical cited type(19)

    1. 戴铮,刘骁佳,潘泉. 基于CCBFE-RCNN模型的焊缝X射线图像缺陷识别算法. 焊接学报. 2025(01): 24-33 . 本站查看
    2. 简珂,王帅,李强. 基于连通域分析的钢管焊缝缺陷检测方法. 测控技术. 2025(02): 11-17 .
    3. 李闯,马行,穆春阳,刘永鹿,秦政硕,张弘. 改进YOLOv3的轻量级铸件焊缝表面缺陷检测. 组合机床与自动化加工技术. 2024(01): 156-159+163 .
    4. 张婷,王登武. 基于空洞分层注意力胶囊网络的X射线焊缝缺陷识别方法. 宇航计测技术. 2024(02): 45-51 .
    5. 穆春阳,李闯,马行,刘永鹿,杨科,刘宝成. 改进YOLOv7-tiny的轻量化大型铸件焊缝缺陷检测. 组合机床与自动化加工技术. 2024(07): 156-160 .
    6. 傅留虎. 基于轻量化特征增强网络的焊缝缺陷检测方法. 焊接. 2024(07): 38-49+57 .
    7. 李国栋,吴志生,彭甫镕,郝康将,昝晓亮,郭威. 基于有监督对比学习的焊缝缺陷X射线检测方法. 焊接. 2024(07): 7-14 .
    8. 苏志威,黄子涵,邱发生,郭朝阳,殷晓芳,邬冠华. 基于改进YOLOv8的航空铝合金焊缝缺陷检测方法. 航空动力学报. 2024(06): 121-129 .
    9. 宋杰三. 基于改进Yolov8的焊缝缺陷检测研究. 中国设备工程. 2024(14): 196-199 .
    10. 李兴红. 基于深度学习的液氯罐车射线图像缺陷自动识别研究. 中国高新科技. 2024(12): 15-17 .
    11. 张小刚,俞东宝,汤慧,朱永利. 基于深度学习的X射线燃料棒端塞缺陷自动检测方法研究. 原子能科学技术. 2024(08): 1767-1776 .
    12. 贾韶辉,李亚平,高炜欣,彭云超,张新建,王玉霞. 基于X射线图像与稀疏描述的管道环焊缝缺陷自动识别法. 油气储运. 2024(09): 1048-1055+1079 .
    13. 张睿,李吉. 多级多尺神经网络自搜索的焊缝缺陷语义分割. 计算机辅助设计与图形学学报. 2024(11): 1750-1760 .
    14. 谢雨欣,龚烨飞,谷心浩,陈晓彬,王萌,徐惠钢. 基于RGB-D特征融合的焊缝表面缺陷检测方法. 焊接学报. 2024(12): 72-78 . 本站查看
    15. 张睿,高美蓉,傅留虎,张鹏云,白晓露,赵娜. 基于多域多尺度深度特征自适应融合的焊缝缺陷检测研究. 振动与冲击. 2023(17): 294-305+313 .
    16. 郑孝干,杨毅豪,林啸,吕雷,肖毓勇,黄潞璐. 基于AI的输电线路导线断散股缺陷检测方法. 电工技术. 2023(20): 69-71+74 .
    17. 田伟倩,朱华兵,张淋,胡斌. 基于卷积神经网络的工业缺陷检测研究进展. 中国特种设备安全. 2023(12): 1-7 .
    18. 邓智超,颜润明,杨蕙同,陈浩林,赖锦祥,雷亮. 基于改进残差网络的多视图焊点缺陷检测. 焊接学报. 2022(03): 56-62+116 . 本站查看
    19. 杨国威,张金丽. 基于光栅投影的焊后焊缝表面三维测量. 焊接学报. 2022(04): 100-105+112+119-120 . 本站查看

    Other cited types(17)

Catalog

    Article views (644) PDF downloads (107) Cited by(36)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return