Citation: | WANG Rui, GAO Shaoze, LIU Weipeng, WANG Gang. A lightweight and efficient X-ray weld image defect detection method[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(7): 41-49. DOI: 10.12073/j.hjxb.20230630003 |
In response to the high cost, slow speed, and difficulty in deploying deep learning models in weld defect detection, this paper proposes a lightweight and high precision optimized detection model (LHODM) with good performance. Firstly, a new backbone network is built and an ultra lightweight convolutional ULConv is designed as the network foundation convolution to reduce model depth, and Depthwise operation was used to generate more effective redundant feature mappings, reducing the amount of parameters and computation. Secondly, an efficient and lightweight dedicated module ELCC is designed. Under the premise of lightweight response model, the distribution characteristics of weld defects and imaging rules are considered, and the relationship between isolated areas is captured from both horizontal and vertical directions.Combined with the lightweight up-sampling operator CARAFE, the model has a larger receptive field during feature recombination, makes more effective use of ambient information, and makes up for the loss of lightweight accuracy. Finally, in order to improve convergence speed and loss function efficiency, an OS-IoU loss function is designed, taking into account the angle between the expected regression vectors, redefining the penalty term and correlation, and strengthening the attention to distance loss and shape loss. The results showed that the LHODM model achieved detection accuracy and speed of 91.62% and 63.47 frames per second, with a model memory cost of only 3.99 million, effectively solving the problems of high cost and slow speed in weld defect detection work.
[1] |
樊丁, 胡桉得, 黄健康, 等. 基于改进卷积神经网络的管焊缝 X 射线图像缺陷识别方法[J]. 焊接学报, 2020, 41(1): 7 − 11.
Fan Ding, Hu Ande, Hang Jiankang, et al. X-rayimage defect recognition method of pipe weld based on improved convolution alneural network[J]. Transactions of the China Welding Institution, 2020, 41(1): 7 − 11.
|
[2] |
Huang X, Wang P, Zhang S, et al. Structural health monitoring and material safety with multispectral technique: A review[J]. Journal of Safety Science and Resilience, 2022, 3(1): 48 − 60. doi: 10.1016/j.jnlssr.2021.09.004
|
[3] |
徐建军, 石巍. 金属管道对接焊缝超声检测缺陷类型识别研究[J]. 世界有色金属, 2022(5): 226 − 228. doi: 10.3969/j.issn.1002-5065.2022.05.076
Xu jianjun, Shi Wei. Research on identification of defect types in ultrasonic testing of metal pipeline butt welds[J]. World Nonferrous Metals, 2022(5): 226 − 228. doi: 10.3969/j.issn.1002-5065.2022.05.076
|
[4] |
Xu X, Zhang X, Zhang T. Lite-yolov5: A lightweight deep learning detector for on-board ship detection in large-scene sentinel-1 sar images[J]. Remote Sensing, 2022, 14(4): 10 − 18. doi: 10.3390/rs14041018
|
[5] |
Liang H, Seo S. Lightweight deep learning for road environment recognition[J]. Applied Sciences, 2022, 12(6): 31 − 68. doi: 10.3390/app12063168
|
[6] |
Razfar N, True J, Bassiouny R, et al. Weed detection in soybean crops using custom lightweight deep learning models[J]. Journal of Agriculture and Food Research, 2022, 8: 100308. doi: 10.1016/j.jafr.2022.100308
|
[7] |
Liu M, Chen Y, Xie J, et al. LF-YOLO: A lighter and faster yolo for weld defect detection of X-ray image[J]. IEEE Sensors Journal, 2023, 23(7): 7430 − 7439. doi: 10.1109/JSEN.2023.3247006
|
[8] |
Zhu Y, Yang R, He Y, et al. A Lightweight multiscale attention semantic segmentation algorithm for detecting laser welding defects on safety vent of power battery[J]. IEEE Access, 2021, 9: 39245. doi: 10.1109/ACCESS.2021.3064180
|
[9] |
Yang Y, Yang R, Pan L, et al. A lightweight deep learning algorithm for inspection of laser welding defects on safety vent of power battery[J]. Computers in Industry, 2020, 123: 1 − 8.
|
[10] |
Guo K, He C, Yang M, et al. A pavement distresses identification method optimized for YOLOv5s[J]. Scientific Reports, 2022, 12(1): 35 − 42. doi: 10.1038/s41598-022-07527-3
|
[11] |
Cao J, Li Y, Sun M, et al. Do-conv: Depthwise over-parameterized convolutional layer[J]. IEEE, 2006, 20: 3726 − 3736.
|
[12] |
Mazzini D. Guided upsampling network for real-time semantic segmentation[J]. Springer Berlin Heidelbery, 2018(6): 19 − 26.
|
[13] |
Frajka T, Zeger K. Downsampling dependent upsampling of images[J]. Signal Processing: Image Communication, 2004, 19(3): 257 − 265. doi: 10.1016/j.image.2003.10.003
|
[14] |
Kundu S, Mostafa H, Sridhar S N, et al. Attention-based Image Upsampling[D]. New York: Cornell University, 2020.
|
[15] |
Wang Jiaqi, Chen Kai, Xu Rui, et al. Carafe: Content-aware reassembly of features[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, Arxiv. 2019: 3007 − 3016.
|
[16] |
Zhou M, Li B, Wang Jue. Optimization of hyperparameters in object detection models based on fractal loss function[J]. Fractal and Fractional, 2022, 6(12): 120706. doi: 10.3390/fractalfract6120706
|
[17] |
Mery D, Riffo V, Zscherpel U, et al. GDXray: The database of X-ray images for nondestructive testing[J]. Journal of Nondestructive Evaluation, 2015, 34(4): 1 − 12.
|
[18] |
Chen L, Tian X, Chai G, et al. A new CBAM-P-Net model for few-shot forest species classification using airborne hyperspectral images[J]. Remote Sensing, 2021, 13(7): 1269. doi: 10.3390/rs13071269
|
[19] |
Dong Z, Li G, Liao Y, et al. Centripetalnet: Pursuing high-quality keypoint pairs for object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Arxiv. 2020: 10519 − 10528.
|
[20] |
Ren S, He K, Girshick R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. Institute of Electrical and Electronics Engineers, 2017, 39(6): 1137 − 1149.
|
[21] |
Cai Z, Vasconcelos N. Cascade: Delving into high quality object detection[C]//Proceedings of the IEEE Conference on Computer vision and Pattern Recognition, Arxiv. 2018: 6154 − 6162.
|
[22] |
Redmon J, Farhadi A. Yolov3: An incremental improvement[J]. Astrophysicd Journal, 2018(7): 1804.
|
[1] | XIE Yuxin, GONG Yefei, GU Xinhao, CHEN Xiaobin, WANG Meng, XU Huigang. Research on weld surface defect detection method based on RGB-D feature fusion[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(12): 72-78. DOI: 10.12073/j.hjxb.20230712002 |
[2] | GUO Zhongfeng, LIU Junchi, YANG Junlin. Weld recognition based on key point detection method[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(1): 88-93. DOI: 10.12073/j.hjxb.20230204001 |
[3] | WANG Rui, HU Yunlei, LIU Weipeng, LI Haitao. Defect detection of weld X-ray image based on edge AI[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(1): 79-84. DOI: 10.12073/j.hjxb.20210516001 |
[4] | LI Hexi, HAN Xinle, FANG Zaojun. A visual model of welding robot based on CNN deep learning[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(2): 154-160. DOI: 10.12073/j.hjxb.2019400060 |
[5] | GAO Weixin, HU Yuheng, WU Xiaomeng. A new algorithm for detecting defects of sub-arc welding x-ray image based on compress sensor theory[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(11): 85-88. |
[6] | LI Xueqin, LIU Peiyong, YIN Guofu, JIANG Honghai. Weld defect detection by X-ray images method based on Fourier fitting surface[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(10): 61-64. |
[7] | SHAO Jiaxin, DU Dong, ZHU Xinjie, GAO Zhiling, WANG Chen. Weld defect detection of double sides weld based on X-ray digitized image[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (11): 21-24. |
[8] | CHEN Ming, MA Yuezhou, CHEN Guang. Weld defects detection for X-ray linear array real-time imaging[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (6): 81-84. |
[9] | CAI Guorui, DU Dong, TIAN Yuan, HOU Runshi, GAO Zhiling. Defect detection of X-ray images of weld using optimized heuristic search based on image information fusion[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (2): 29-32. |
[10] | LIANG De-qun, SHEN San, YANG Hai-jun. Measurement of Deep Sclae on Weld Defects based on Point X-Pay Source[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2000, (3): 5-8. |
1. |
戴铮,刘骁佳,潘泉. 基于CCBFE-RCNN模型的焊缝X射线图像缺陷识别算法. 焊接学报. 2025(01): 24-33 .
![]() | |
2. |
简珂,王帅,李强. 基于连通域分析的钢管焊缝缺陷检测方法. 测控技术. 2025(02): 11-17 .
![]() | |
3. |
李闯,马行,穆春阳,刘永鹿,秦政硕,张弘. 改进YOLOv3的轻量级铸件焊缝表面缺陷检测. 组合机床与自动化加工技术. 2024(01): 156-159+163 .
![]() | |
4. |
张婷,王登武. 基于空洞分层注意力胶囊网络的X射线焊缝缺陷识别方法. 宇航计测技术. 2024(02): 45-51 .
![]() | |
5. |
穆春阳,李闯,马行,刘永鹿,杨科,刘宝成. 改进YOLOv7-tiny的轻量化大型铸件焊缝缺陷检测. 组合机床与自动化加工技术. 2024(07): 156-160 .
![]() | |
6. |
傅留虎. 基于轻量化特征增强网络的焊缝缺陷检测方法. 焊接. 2024(07): 38-49+57 .
![]() | |
7. |
李国栋,吴志生,彭甫镕,郝康将,昝晓亮,郭威. 基于有监督对比学习的焊缝缺陷X射线检测方法. 焊接. 2024(07): 7-14 .
![]() | |
8. |
苏志威,黄子涵,邱发生,郭朝阳,殷晓芳,邬冠华. 基于改进YOLOv8的航空铝合金焊缝缺陷检测方法. 航空动力学报. 2024(06): 121-129 .
![]() | |
9. |
宋杰三. 基于改进Yolov8的焊缝缺陷检测研究. 中国设备工程. 2024(14): 196-199 .
![]() | |
10. |
李兴红. 基于深度学习的液氯罐车射线图像缺陷自动识别研究. 中国高新科技. 2024(12): 15-17 .
![]() | |
11. |
张小刚,俞东宝,汤慧,朱永利. 基于深度学习的X射线燃料棒端塞缺陷自动检测方法研究. 原子能科学技术. 2024(08): 1767-1776 .
![]() | |
12. |
贾韶辉,李亚平,高炜欣,彭云超,张新建,王玉霞. 基于X射线图像与稀疏描述的管道环焊缝缺陷自动识别法. 油气储运. 2024(09): 1048-1055+1079 .
![]() | |
13. |
张睿,李吉. 多级多尺神经网络自搜索的焊缝缺陷语义分割. 计算机辅助设计与图形学学报. 2024(11): 1750-1760 .
![]() | |
14. |
谢雨欣,龚烨飞,谷心浩,陈晓彬,王萌,徐惠钢. 基于RGB-D特征融合的焊缝表面缺陷检测方法. 焊接学报. 2024(12): 72-78 .
![]() | |
15. |
张睿,高美蓉,傅留虎,张鹏云,白晓露,赵娜. 基于多域多尺度深度特征自适应融合的焊缝缺陷检测研究. 振动与冲击. 2023(17): 294-305+313 .
![]() | |
16. |
郑孝干,杨毅豪,林啸,吕雷,肖毓勇,黄潞璐. 基于AI的输电线路导线断散股缺陷检测方法. 电工技术. 2023(20): 69-71+74 .
![]() | |
17. |
田伟倩,朱华兵,张淋,胡斌. 基于卷积神经网络的工业缺陷检测研究进展. 中国特种设备安全. 2023(12): 1-7 .
![]() | |
18. |
邓智超,颜润明,杨蕙同,陈浩林,赖锦祥,雷亮. 基于改进残差网络的多视图焊点缺陷检测. 焊接学报. 2022(03): 56-62+116 .
![]() | |
19. |
杨国威,张金丽. 基于光栅投影的焊后焊缝表面三维测量. 焊接学报. 2022(04): 100-105+112+119-120 .
![]() |