Citation: | DAI Zheng, LIU Xiaojia, PAN Quan. Defect identification algorithm for weld X-ray imagesbased on the CCBFE-RCNN model[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2025, 46(1): 24-33. DOI: 10.12073/j.hjxb.20231104001 |
In view of the problems of high labor intensity and low detection efficiency in the manual evaluation process of X-ray images, a multi-scale object detection network CCBFE-RCNN model based on the improved Cascade-RCNN network is proposed. The combined convolutional layer structure and FPN feature pyramid network are used to enhance the scale range of model feature extraction, and the model's ability to extract multi-scale features is enhanced; Use BFE features to batch eliminate networks, randomly eliminate feature map regions, avoid overfitting problems during multiple training processes, and enhance feature region expression. At the same time, improve the loss function to increase penalties for models that do not accurately identify images containing defects. The model was tested by constructing and expanding a dataset of X-ray images of fusion welds The results show that the CCBFE-RCNN defect detection model has an average recall rate of 93.09% and an average precision rate of 91.92% across all categories, which is 5.16% higher than the average recall rate and 5.27% higher than the average precision rate of the Cascade-RCNN network model. The CCBFE-RCNN model is tested using an industrial defect detection dataset to verify its generalization ability, which can provide algorithm support for intelligent recognition of weld defects.
[1] |
Li Y W. Research progress of aluminum alloy welding technology[J]. The International Journal of Advanced Manufacturing Technology, 2020, 109(1): 1207 − 1218.
|
[2] |
Chen S B. On intelligentized welding manufacturing. In: Robotic welding[C]//Intelligence and Automation: RWIA’2014. Springer International Publishing, 2015: 3 − 34.
|
[3] |
Ahmed, Mohamed M Z. Friction stir welding of aluminum in the aerospace industry: the current progress and state-of-the-art review[J]. Materials, 2023, 16(8): 2971. doi: 10.3390/ma16082971
|
[4] |
Mohandas T. Welding technologies in aerospace applications[J]. Aerospace Materials and Material Technologies, 2017, 2(1): 65 − 83.
|
[5] |
Wang G, Liao T W. Automatic identification of different types of welding defects in radiographic images[J]. Ndt & E International, 2002, 35(8): 519 − 528.
|
[6] |
Madhvacharyula, Anirudh Sampath, Pavan, et al. In situ detection of welding defects: a review[J]. Welding in the World, 2022, 66(4): 611 − 628. doi: 10.1007/s40194-021-01229-6
|
[7] |
Andrew G, Vignesh S, Sooyoung L, et al. Applications of deep learning for fault detection in industrial cold forging[J]. International Journal of Production Reseach, 2021, 59(16): 4826 − 4835.
|
[8] |
Lenka L, Jan S, Renata W. The learning path to neural network industrial application in distributed envisonment[J]. Processes, 2021, 9(12): 2247. doi: 10.3390/pr9122247
|
[9] |
Dutta, Sourav. An overview on the evolution and adoption of deep learning applications used in the industry[J]. Wiley Interdisciplinary Reviews:Data Mining and Knowledge Discovery, 2018, 8(4): 1257. doi: 10.1002/widm.1257
|
[10] |
王睿, 胡云雷, 刘卫朋, 等. 基于边缘AI的焊缝X射线图像缺陷检测[J]. 焊接学报, 2022, 43(1): 79 − 84.
Wang Rui, Hu Yunlei, Liu Weipeng, et al. Defect detection of weld X-ray image based on edge AI[J]. Transactions of the China Welding Institution, 2022, 43(1): 79 − 84.
|
[11] |
刘欢, 刘骁佳, 王宇斐, 等. 基于复合卷积层神经网络结构的焊缝缺陷分类技术[J]. 航空学报, 2022, 43(S1): 165 − 172.
Liu Huan, Liu Xiaojia, Wang Yufei, et al. Weld defect classification technology based on compound convolution neural network structure[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(S1): 165 − 172.
|
[12] |
任文坚, 王永红, 李春凯, 等. 液体火箭发动机推力室熔焊缝数字化胶片图像缺陷识别方法研究[J]. 电焊机, 2023, 53(1): 9 − 14.
Ren Wenjian, Wang Yonghong, Li Chunkai, et al. Research on automatic detection method of DR digital imaging for brazing seam defects of thrust chamber body[J]. Electric Welding Machine, 2023, 53(1): 9 − 14.
|
[13] |
程松, 杨洪刚, 徐学谦, 等. 基于YOLOv5的改进轻量型X射线铝合金焊缝缺陷检测算法[J]. 中国激光, 2022, 49(21): 136 − 144.
Cheng Song, Yang Honggang, Xu Xueqian, et al. Improved lightweight X-ray aluminum alloy weld defects detection algorithm basedon YOLOv5[J]. Chinese Journal of Lasers, 2022, 49(21): 136 − 144.
|
[14] |
杨会敏, 李春棚, 袁新安, 等. 基于SSD的交流电磁场缺陷智能识别方法[J]. 无损检测, 2022, 44(8): 25 − 30.
Yang Huimin, Li Chunpeng, Yuan Xin’an, et al. Defects intelligent recognition method of ACFM based on SSD[J]. Nondestructive Testing, 2022, 44(8): 25 − 30.
|
[15] |
Zhang Z, Zhang Y, Wen Y, et al. Intelligent defect detection method for additive manufactured lattice structures based on a modified YOLOv3 model[J]. Journal of Nondestructive Evaluation, 2022, 41(1): 1 − 14. doi: 10.1007/s10921-021-00836-z
|
[16] |
Wei X, Wei D, Suo D, et al. Multi-target defect identification for railway track line based on image processing and improved YOLOv3 model[J]. IEEE Access, 2020, 8(1): 973 − 988.
|
[17] |
Dong C, Zhang K, Xie Z, et al. An improved cascade RCNN detection method for key components and defects of transmission lines[J]. IET Generation, Transmission Distribution, 2023, 17(19): 4277 − 4292. doi: 10.1049/gtd2.12948
|
[18] |
Redmon J, Divvala S, Girshick R, et al. You only look once: unified, realtime object detection[J]. Computer Vision and Pattern Recognition, 2016, 91(1): 779 − 788.
|
[19] |
Bhavya Sree B, Yashwanth Bharadwaj V, Neelima N. An inter-comparative survey on state-of-the-art detectors—R-CNN, YOLO and SSD[C]//Intelligent Manufacturing and Energy Sustainability: Proceedings of ICIMES 2020. Springer Singapore, 2021: 475 − 483.
|
[20] |
Cao C Q. An improved faster R-CNN for small object detection[J]. Ieee Access, 2019, 7(1): 106838 − 106846.
|
[21] |
Bharati P, Pramanik A. Deep learning techniques—R-CNN to mask R-CNN: a survey[J]. Computational Intelligence in Pattern Recognition:Proceedings of CIPR 2019, 2020(1): 657 − 668.
|
[22] |
Cai Z W, Vasconcelos N. Cascade R-CNN: delving into high quality object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recongnition, 2018: 6165 − 6162.
|
[23] |
Sun C Y, Hong X J, Shi S, et al. Cascade faster R-CNN detection for vulnerable plaques in OCT images[J]. IEEE Access, 2021(9): 24697 − 24704.
|
[24] |
Cai Z W, Vasconcelos Nuno. Cascade R-CNN: high quality object detection and instance segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 43(5): 1483 − 1498.
|
[25] |
Feng T, Liu J G, Xia F, et al. A double-branch surface detection system for armatures in vibration motors with miniature volume based on ResNet-101 and FPN[J]. Sensors, 2020, 20(8): 1 − 16. doi: 10.1109/JSEN.2020.2978309
|
[26] |
Alshammari A, Chabaan R C. Sppn-Rn101: spatial pyramid pooling network with resnet 101-Based foreign object debris detection in airports[J]. Mathematics, 2023, 11(4): 841. doi: 10.3390/math11040841
|
[27] |
Ren K, Huang L, Fan C Q, et al. Real-time traffic sign detection network using DS-DetNet and lite fusion FPN[J]. Journal of Real-Time Image Processing, 2021, 18(6): 1 − 11.
|
[28] |
Li Y C, Zhou S L, Chen H, et al. Attention-based fusion factor in FPN for object detection[J]. Applied Intelligence, 2022, 1(1): 1 − 10.
|
[29] |
Chen J Y, Liu S P, Zhao L. Small object detection combining attention mechanism and a novel FPN[J]. Journal of Intelligent Fuzzy Systems, 2022, 42(4): 3691 − 3703.
|
[30] |
Dai Z Z, Chen M Q, Gu X D, et al. Batch drop block network for person re-identification and beyond [C]// Proceedings of the IEEE Conference on Computer Vision, 2019: 3690 − 3700.
|
[31] |
Ye J. Single valued neutrosophic cross-entropy for multicriteria decision making problems[J]. Applied Mathematical Modelling, 2014, 38(3): 1170 − 1175. doi: 10.1016/j.apm.2013.07.020
|
[32] |
Chen Y P, Xu K, Zhou P, et al. Improved cross entropy loss for noisy labels in vision leaf disease classification[J]. IET Image Processing, 2022, 16(6): 1511 − 1519. doi: 10.1049/ipr2.12402
|
[33] |
程松, 戴金涛, 杨洪刚, 等. 基于改进型YOLOv4的焊缝图像检测与识别[J]. 激光与光电子学进展, 2022, 59(16): 105 − 111.
Cheng Song, Dai Jintao, Yang Honggang, et al. Weld Image detection and recognition based on improved YOLOv4[J]. Laser & Optoelectronics Progress, 2022, 59(16): 105 − 111.
|
[1] | ZHANG Yong, MA Tiejun, HE Youxu, YANG Siqian. Precise calculation methods of power factor for single-phase alternating current spot welding machine[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (3): 85-88. |
[2] | CAO Biao, HUANG Zhihua. Research on precision seam welding inverter[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (12): 45-48. |
[3] | LI Yulong, ZHANG Hua, ZHANG Guangyun, XU Jianning, . Precision rapid prototyping of steel parts using TIG depositision technology[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (9): 37-40. |
[4] | KONG Liang, YU Hailiang, JIN Xin, WU Yixiong. Quantitative analysis method of geometrical precision quality on precision welding structure[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (11): 85-88. |
[5] | LI Wenhang, CHEN Shanben, WANG Jiayou, YANG Feng. Modeling method for pulsed GTAW welding process based on variable precision rough set[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (7): 57-59,63. |
[6] | ZHAO Ming, WU Chuan-song, ZHAO Peng-cheng. Improvement on numerical simulation precision of GTAW weld pool geometry[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (3): 17-20,28. |
[7] | CHEN Jun-mei, LU Hao, WANG Jian-hua, CHEN Wei-xin, HAO Da-jun. Effect of Mesh Sizes on Welding Deformation Prediction Precision of Buicks Underframe Assembly[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2002, (2): 33-35,39. |
[8] | CHEN Nian, SUN Zhen-guo, CHEN Qiang. A Visual Sensor Based Weld Seam Tracking Method for Precision Pulse TIG Welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2001, (4): 17-20. |
[9] | Wang Xiaochuan, Liu Mingyu, Ai Yongyi. Arbitrary Wavetorm Modulating System of Precise Spot Welding Power Source[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1998, (4): 26-30. |
[10] | Meng Gongge. Reliability and precision of blind hole drilling method for determining high residual stresses[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1991, (4): 235-238. |
1. |
刘骁佳,夏永江,戴铮,王堃,刘晓,洪海波. 面向多品种大批量生产的航天飞行器智能工厂关键技术研究. 上海航天(中英文). 2025(02): 58-66 .
![]() |