Advanced Search
ZHANG Deku, HE Siyuan, YIN Hongyu, WANG Kehong. Large diameter hollow stud welding process based on longitudinal magnetic field control[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(9): 74-80. DOI: 10.12073/j.hjxb.20210514002
Citation: ZHANG Deku, HE Siyuan, YIN Hongyu, WANG Kehong. Large diameter hollow stud welding process based on longitudinal magnetic field control[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(9): 74-80. DOI: 10.12073/j.hjxb.20210514002

Large diameter hollow stud welding process based on longitudinal magnetic field control

More Information
  • Received Date: May 13, 2021
  • Available Online: December 01, 2021
  • The arc stud welding method was used to weld 45 steel plate and hollow stud with outer diameter of 20 mm and inner diameter of 10 mm. Effects of the rotating arc magnetic field on microstructure and mechanical properties were studied. The results show that with the longitudinal rotating arc magnetic field, the charge in the arc moved spirally under the action of Lorentz force, which extended outward to some extent and the appearance of the joint was improved. The thermal cycle condition of joint was improved thanks to the continuous stirring of molten pool by controlled arc, and the solidification and crystallization of molten pool was affected. The proeutectoid ferrite showed a regular network distribution and the pearlite became fine. For the decrease of joint temperature gradient, the solid-state phase transition time increased, the martensite content in the heat affected zone of the parent metal of 45 steel side decreased significantly and the width of HAZ became smaller. When the rotating arc magnetic field current was too large, the spatter tendency increased obviously as well as the porosity in the weld increased. When the welding time of 1 400 ms, the welding current of 800 A and the rotating arc current of 0.43 A, the arc was fully burned at the full end face of the hollow stud, the shear strength of joints can reach 325 MPa.
  • Harada Y, Sada Y, Kumai S. Dissimilar joining of AA2024 aluminum studs and AZ80 magnesium plates by high-speed solid-state welding[J]. Journal of Materials Processing Technology, 2014, 214(2): 477 − 484. doi: 10.1016/j.jmatprotec.2013.10.005
    王克鸿, 张德库, 薛鹏飞, 等 . 复合热源螺柱焊方法[J]. 焊接学报, 2008, 29(11): 45 − 48. doi: 10.3321/j.issn:0253-360X.2008.11.012

    Wang Kehong, Zhang Deku, Xue Pengfei, et al. Compound heat source stud welding method[J]. Transactions of the China Welding Institution, 2008, 29(11): 45 − 48. doi: 10.3321/j.issn:0253-360X.2008.11.012
    顾艳红, 马慧娟, 高辉, 等. 16Mn钢摩擦螺柱焊接头的微观组织与局部腐蚀[J]. 上海交通大学学报, 2017, 51(11): 1348 − 1354.

    Gu Yanhong, Ma Huijuan, Gao Hui, et al. Microstructure and local corrosion behavior of friction stud welding of 16Mn steel[J]. Journal of Shanghai Jiaotong University, 2017, 51(11): 1348 − 1354.
    高辉, 焦向东, 周灿丰, 等. 基于Abaqus的水下摩擦螺柱焊焊接过程仿真[J]. 焊接学报, 2014, 35(12): 50 − 54.

    Gao Hui, Jiao Xiangdong, Zhou Canfeng, et al. Simulation of underwater friction stud welding process based on Abaqus[J]. Transactions of the China Welding Institution, 2014, 35(12): 50 − 54.
    王克鸿, 张德库, 郑石雄, 等. 空心螺柱旋弧焊接方法[J]. 焊接学报, 2008, 29(12): 101 − 103. doi: 10.3321/j.issn:0253-360X.2008.12.026

    Wang Kehong, Zhang Deku, Zheng Shixiong, et al. Rotating arc welding method of hollow stud[J]. Transactions of the China Welding Institution, 2008, 29(12): 101 − 103. doi: 10.3321/j.issn:0253-360X.2008.12.026
    艾星宇. 纵向磁场与活性剂联合下镁合金焊接接头组织性能的研究[D]. 沈阳: 沈阳工业大学, 2017.

    Ai Xingyu. Study on microstructure property of magnesium alloy welded joint under the longitudinal magnetic field associated with active agents[D]. Shenyang: Shenyang University of Technology, 2017.
    Kamikawa S, Ishii I, Takezawa K, et al. Elastic softening due to the quadrupole interaction and anomalous magnetic phase diagram under the magnetic field in HoRu2Al10[J]. Physical Review B, 2017, 96(15): 155131. doi: 10.1103/PhysRevB.96.155131
    Zhang Xun, Zhao Zeyang, Mi Gaoyang, et al. Effect of external longitudinal magnetic field on arc plasma characteristics and droplet transfer during laser-MIG hybrid welding[J]. International Journal of Advanced Manufacturing Technology, 2017, 92(5-8): 2185 − 2195. doi: 10.1007/s00170-017-0293-2
    姚猛. 空心螺柱焊接工程化质量控制研究[D]. 南京: 南京理工大学, 2018.

    Yao Meng. Study on quality control of hollow stud welding engineering[D]. Nanjing: Nanjing University of Science and Technology, 2018.
    Egry I, Ricci E, Novakovic R, et al. Surface tension of liquid metals and alloys recent developments[J]. Advances in Colloid & Interface Science, 2010, 159(2): 198 − 212.
    孙莉, 张腾, 刘晨曦, 等. 单组分活性剂对二氧化碳气体保护焊熔池形态的影响[J]. 天津科技, 2017, 44(6): 29 − 34. doi: 10.3969/j.issn.1006-8945.2017.06.010

    Sun Li, Zhang Teng, Liu Chenxi, et al. Effect of single component active flux on weld pool for carbon dioxide welding[J]. Tianjin Science and Technology, 2017, 44(6): 29 − 34. doi: 10.3969/j.issn.1006-8945.2017.06.010
    陈荣. 磁场辅助激光_MIG复合焊接对316L焊缝组织与性能影响的研究[D]. 武汉: 华中科技大学, 2018.

    Chen Rong. Research on influence of microstructure and properties of 316L welds via magnetic field assisted laser-MIG hybrid welding[D]. Wuhan: Huazhong University of Science and Technology, 2018.
    Kohout J. An alternative to the JMAK equation for a better description of phase transformation kinetics[J]. Journal of Materials Science, 2008, 43(4): 1334 − 1339. doi: 10.1007/s10853-007-2255-9
  • Related Articles

    [1]LI Zhao, LIU Yang, ZHANG Hao, SUN Fenglian. Bonding strength and plasticity of multiscale composite nanosilver paste for low temperature sintering[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(10): 106-110. DOI: 10.12073/j.hjxb.2019400271
    [2]LI Haixin, WEI Hongmei, HE Peng, FENG Jicai. Interfacial microstructure and bonding strength of diffusion bonded TiAl/Ti/Nb/GH99 alloy joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (9): 9-12.
    [3]LI Haixin, LIN Tiesong, HE Peng, WEI Hongmei, FENG Jicai. Effect of holding time on interface structure and bonding strength of diffusion bonding joint of TiAl and Ni-based alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (6): 43-46.
    [4]HE Peng, YANG Xiujuan, FENG Jicai, LIU Hong. Effects of holding time on interface structure and bonding strength of brazed joint of hydrogenated TC4 titanium alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (2): 1-4.
    [5]WANG Fu-liang, LI Jun-hui, HAN Lei, ZHONG Jue. Effect of bonding time on thick aluminum wire wedge bonding strength[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (5): 47-51.
    [6]QIU Chang-jun, ZHOU Wei, HE Bin, FAN Xiang-fang. Study and finite element method analysis for bond strength of high-strength coating[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (4): 105-107.
    [7]FENG Ji-cai, JING Xiang-meng, ZHANG Li-xia, LIU Hong. Interface structure and bonding strength of brazed joint of TiC cermet/steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (1): 5-8.
    [8]LONG Zhi-li, HAN lei, WU Yun-xin, ZHOU Hong-quan. Effect of different temperature on strength of thermosonic bonding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (8): 23-26,38.
    [9]ZOU Jia-sheng, XU Zhi-rong, ZHAO Qi-zhang, CHEN Zheng. Bonding strength of double partial transient liquid phase bonding with Si3N4/Ti/Cu/Ni/Cu/Ti/Si3N4[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (2): 41-44.
    [10]Liu Huijie, Feng Jicai, Qian Yiyu. Interface Structures and Bonding Strength of SiC/TiAl Joints in Diffusion Bonding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1999, (3): 170-174.
  • Cited by

    Periodical cited type(0)

    Other cited types(1)

Catalog

    Article views (251) PDF downloads (23) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return