Advanced Search
PEI Longji, HU Zhiyue, QU Long, JIANG Shuying, ZHANG Junli. Microstructure and properties of TA2/ Co13Cr28Cu31Ni28/ Q235 pulsed TIG weld joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(11): 90-96. DOI: 10.12073/j.hjxb.20210427002
Citation: PEI Longji, HU Zhiyue, QU Long, JIANG Shuying, ZHANG Junli. Microstructure and properties of TA2/ Co13Cr28Cu31Ni28/ Q235 pulsed TIG weld joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(11): 90-96. DOI: 10.12073/j.hjxb.20210427002

Microstructure and properties of TA2/ Co13Cr28Cu31Ni28/ Q235 pulsed TIG weld joint

More Information
  • Received Date: April 26, 2021
  • Available Online: December 30, 2021
  • Due to the significant difference in physical and chemical properties between steel and titanium, a large number of intermetallic compounds are formed in the weld, which makes it difficult to achieve reliable connections. According to the idea of solid dissolution and high entropy of weld metal, Co13Cr28Cu31Ni28 high entropy alloy was selected as an intermediate transition layer for pulse tungsten inert gas welding of TA2 titanium and Q235 steel, the microstructure and properties of Co13Cr28Cu31Ni28 high entropy alloy and the weld joint were analyzed and studied. The results show that Co13Cr28Cu31Ni28 mainly has a two-phase face-centered cubic structure (FCC),which is cu-rich intercrystalline FCC phase and intra crystalline FCC phase, and its strength and plasticity are good. The welded joint is formed well, without stomals, cracks and other defects. The weld microstructure is composed of simple solid solution structures, which are mainly FCC phases on the Q235 side, and mainly body-centered cubic structure (BCC) and FCC phases on the TA2 side, mainly composed of BCC phases. The tensile strength of the welded joint is 224 MPa, broken at the fusion zone near the high entropy alloy on the TA2 side, this is mainly due to the formation of brittle Cr3O8. Many dimples and cleavage planes are observed on the fracture port, which shows certain tough fracture characteristics.
  • 刘全明, 龙伟民, 傅莉, 等. 氢致TA10钛合金焊接接头拉伸性能演变[J]. 焊接学报, 2020, 41(12): 20 − 24.

    Liu Quanming, Long Weimin, Fu Li, et al. Tensile properties evolution of hydrogen-induced TA10 titanium alloy welded joints[J]. Transactions of the China Welding Institution, 2020, 41(12): 20 − 24.
    房中行, 史长根, 冯柯, 等. TA2-1060-TA2复合板爆炸焊接试验及性能测试[J]. 焊接学报, 2019, 40(9): 87 − 92.

    Fang Zhonghang, Shi Changgen, Feng Ke, et al. Explosive welding experiment and property test of TA2-1060-TA2 cladding plate[J]. Transactions of the China Welding Institution, 2019, 40(9): 87 − 92.
    刘坤, 李亚江, 王娟, 等. 填丝TIG焊TA15钛合金与18-8钢接头的微观组织[J]. 焊接学报, 2017, 38(2): 57 − 60.

    Liu Kun, Li Yajiang, Wang Juan, et al. Microstructure of TA15 alloy and 18-8 stainless steel joint by TIG with filler metal[J]. Transactions of the China Welding Institution, 2017, 38(2): 57 − 60.
    Ghosh M, Das S, Banarjee P S. Variation in the reaction zone and its effects on the strength of diffusion bonded titanium–stainless steel couple[J]. Materials Science & Engineering A, 2005, 390(1): 217 − 226.
    Shiue R K, Wu S K, Shiue J Y, et al. Infrared brazing of Ti-6Al-4V and 17-4 PH stainless steel with (Ni)/Cr barrier layer(s)[J]. Materials Science and Engineering A, 2008, 488(1): 186 − 194.
    Isaev V I, Cherepanov A N, Shapeev V P. Numerical study of heat modes of laser welding of dissimilar metals with an intermediate insert[J]. International Journal of Heat and Mass Transfer, 2016, 99: 711 − 720. doi: 10.1016/j.ijheatmasstransfer.2016.04.019
    Wang T, Zhang B G, Wang H Q, et al. Microstructures and mechanical properties of electron beam-welded titanium-steel joints with vanadium, nickel, copper and silver filler metals[J]. Journal of Materials Engineering and Performance, 2014, 23(4): 1498 − 1504. doi: 10.1007/s11665-014-0897-8
    Yuan X J, Tang K, Deng Y Q, et al. Impulse pressuring diffusion bonding of a copper alloy to a stainless steel with/without a pure nickel interlayer[J]. Materials and Design, 2013, 52: 359 − 366. doi: 10.1016/j.matdes.2013.05.057
    Zhang Y, Zuo T T, Tang Z, et al. Microstructures and properties of high-entropy alloys[J]. Progress in Materials Science, 2014, 61(4): 1 − 93.
    侯光远. 基于焊缝金属高熵化的钛/钢TIG焊研究[D]. 西安: 西安理工大学, 2015.

    Hou Guangyuan. Research on TIG welding of titanium/steel based on high entropy of weld metal [D]. Xi'an: Xi'an University of Technology, 2015.
    Hao X, Dong H, Xia Y, et al. Microstructure and mechanical properties of laser welded TC4 titanium alloy/304 stainless steel joint with (CoCrFeNi)100−xCux high-entropy alloy interlayer[J]. Journal of Alloys and Compounds, 2019, 803: 649 − 657. doi: 10.1016/j.jallcom.2019.06.225
    翟秋亚, 刘帅宾, 杨全虎, 等. Ta1/Ta8Ni30Cr20Cu42/0Cr18Ni9储能焊接头组织与性能[J]. 焊接学报, 2020, 41(10): 60 − 64. doi: 10.12073/j.hjxb.20200822001

    Zhai Qiuya, Liu Shuaibin, Yang Quanhu, et al. Microstructure and properties of Ta1/Ta8Ni30Cr20Cu42/0Cr18Ni9 energy storage welding joint[J]. Transactions of the China Welding Institution, 2020, 41(10): 60 − 64. doi: 10.12073/j.hjxb.20200822001
    Kulkarni R, Murty B S, Srinivas V. Study of microstructure and magnetic properties of AlNiCo(CuFe) high entropy alloy[J]. Journal of Alloys and Compounds, 2018, 746: 194 − 199. doi: 10.1016/j.jallcom.2018.02.275
    Zhang M, Zhang L, Fan J, et al. Microstructure and enhanced mechanical behavior of the Al7Co24Cr21Fe24Ni24 high-entropy alloy system by tuning the Cr content[J]. Materials Science and Engineering A, 2018, 733: 299 − 306. doi: 10.1016/j.msea.2018.07.069
    Xin Xian, Lin Lijing, Zhong Zhihong, et al. Precipitation and its strengthening of Cu-rich phase in CrMnFeCoNiCux high-entropy alloys[J]. Materials Science & Engineering A, 2018, 713: 134 − 140.
    Qiu X W, Liu C G. Microstructure and properties of Al2CrFeCoCuTiNix high-entropy alloys prepared by laser cladding[J]. Journal of Alloys & Compounds, 2013, 553: 216 − 220.
  • Related Articles

    [1]CAI Jiasi, WANG Wen, GAO Jianxin, JIN Hongxi, WEI Yanhong. Effect of oscillating laser welding parameters on energy distribution and joint forming of 5A06 thick plate aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2025, 46(1): 48-58. DOI: 10.12073/j.hjxb.20231105001
    [2]LU Yiting, LU Wei, WANG Bin, MA Xuyi, CHEN Wei. Effect of laser wobble on energy distribution and weld forming of Ti60 alloy laser welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(6): 95-102. DOI: 10.12073/j.hjxb.20220728001
    [3]YAO Liangzhen, YIN Yisheng, ZHANG Chengrui, ZHOU Litao, LIU Riliang. Optimization of laser welding quality at corners based on power tracking control[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(5): 102-108. DOI: 10.12073/j.hjxb.20220519001
    [4]CHEN Haiyong, DU Xiaolin, DONG Yan. Tiny visual feature extraction of random changing weld[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(5): 97-101.
    [5]SUN Chengqi, GAO Yang, YANG Deming, CHEN Zhenyu. Spectral diagnostics of electron number density in plasma jet under atmosphere thermal plasma spray[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(4): 75-78.
    [6]SHEN Chunlong, ZHANG Meiping, ZHOU Qi, XU Jianhua, WANG Kehong. 3D transient simulation and computation for electron beam energy density spatial distribution[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (9): 1-4.
    [7]YANG Xiaohong, SONG Yonglun, HU Kunping. Characteristic of time-energy distribution at current-zero period on AC TIG welding arc[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (2): 21-24.
    [8]WANG Zhi-yong, CHEN Kai, ZUO Tie-chuan. Influence of High-oiwer CO2 Laser Beams' Transverse Intensity Distribution on Laser Welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2000, (3): 17-19.
    [9]Zhao Pengsheng, Wang Yaowen. Distribution model for current density of plasma welding arcs[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1991, (3): 182-188.
    [10]Zeng Hong, Ding Peifan. A STUDY OF THE MEASURER FOR THE POWER DENSITY DISTRIBUTION OF ELECTRON BEAM UNDER MICRO-COMPUTER CONTROL[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1988, (4): 223-231.

Catalog

    Article views (363) PDF downloads (31) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return