Advanced Search
PEI Longji, HU Zhiyue, QU Long, JIANG Shuying, ZHANG Junli. Microstructure and properties of TA2/ Co13Cr28Cu31Ni28/ Q235 pulsed TIG weld joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(11): 90-96. DOI: 10.12073/j.hjxb.20210427002
Citation: PEI Longji, HU Zhiyue, QU Long, JIANG Shuying, ZHANG Junli. Microstructure and properties of TA2/ Co13Cr28Cu31Ni28/ Q235 pulsed TIG weld joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(11): 90-96. DOI: 10.12073/j.hjxb.20210427002

Microstructure and properties of TA2/ Co13Cr28Cu31Ni28/ Q235 pulsed TIG weld joint

More Information
  • Received Date: April 26, 2021
  • Available Online: December 30, 2021
  • Due to the significant difference in physical and chemical properties between steel and titanium, a large number of intermetallic compounds are formed in the weld, which makes it difficult to achieve reliable connections. According to the idea of solid dissolution and high entropy of weld metal, Co13Cr28Cu31Ni28 high entropy alloy was selected as an intermediate transition layer for pulse tungsten inert gas welding of TA2 titanium and Q235 steel, the microstructure and properties of Co13Cr28Cu31Ni28 high entropy alloy and the weld joint were analyzed and studied. The results show that Co13Cr28Cu31Ni28 mainly has a two-phase face-centered cubic structure (FCC),which is cu-rich intercrystalline FCC phase and intra crystalline FCC phase, and its strength and plasticity are good. The welded joint is formed well, without stomals, cracks and other defects. The weld microstructure is composed of simple solid solution structures, which are mainly FCC phases on the Q235 side, and mainly body-centered cubic structure (BCC) and FCC phases on the TA2 side, mainly composed of BCC phases. The tensile strength of the welded joint is 224 MPa, broken at the fusion zone near the high entropy alloy on the TA2 side, this is mainly due to the formation of brittle Cr3O8. Many dimples and cleavage planes are observed on the fracture port, which shows certain tough fracture characteristics.
  • 刘全明, 龙伟民, 傅莉, 等. 氢致TA10钛合金焊接接头拉伸性能演变[J]. 焊接学报, 2020, 41(12): 20 − 24.

    Liu Quanming, Long Weimin, Fu Li, et al. Tensile properties evolution of hydrogen-induced TA10 titanium alloy welded joints[J]. Transactions of the China Welding Institution, 2020, 41(12): 20 − 24.
    房中行, 史长根, 冯柯, 等. TA2-1060-TA2复合板爆炸焊接试验及性能测试[J]. 焊接学报, 2019, 40(9): 87 − 92.

    Fang Zhonghang, Shi Changgen, Feng Ke, et al. Explosive welding experiment and property test of TA2-1060-TA2 cladding plate[J]. Transactions of the China Welding Institution, 2019, 40(9): 87 − 92.
    刘坤, 李亚江, 王娟, 等. 填丝TIG焊TA15钛合金与18-8钢接头的微观组织[J]. 焊接学报, 2017, 38(2): 57 − 60.

    Liu Kun, Li Yajiang, Wang Juan, et al. Microstructure of TA15 alloy and 18-8 stainless steel joint by TIG with filler metal[J]. Transactions of the China Welding Institution, 2017, 38(2): 57 − 60.
    Ghosh M, Das S, Banarjee P S. Variation in the reaction zone and its effects on the strength of diffusion bonded titanium–stainless steel couple[J]. Materials Science & Engineering A, 2005, 390(1): 217 − 226.
    Shiue R K, Wu S K, Shiue J Y, et al. Infrared brazing of Ti-6Al-4V and 17-4 PH stainless steel with (Ni)/Cr barrier layer(s)[J]. Materials Science and Engineering A, 2008, 488(1): 186 − 194.
    Isaev V I, Cherepanov A N, Shapeev V P. Numerical study of heat modes of laser welding of dissimilar metals with an intermediate insert[J]. International Journal of Heat and Mass Transfer, 2016, 99: 711 − 720. doi: 10.1016/j.ijheatmasstransfer.2016.04.019
    Wang T, Zhang B G, Wang H Q, et al. Microstructures and mechanical properties of electron beam-welded titanium-steel joints with vanadium, nickel, copper and silver filler metals[J]. Journal of Materials Engineering and Performance, 2014, 23(4): 1498 − 1504. doi: 10.1007/s11665-014-0897-8
    Yuan X J, Tang K, Deng Y Q, et al. Impulse pressuring diffusion bonding of a copper alloy to a stainless steel with/without a pure nickel interlayer[J]. Materials and Design, 2013, 52: 359 − 366. doi: 10.1016/j.matdes.2013.05.057
    Zhang Y, Zuo T T, Tang Z, et al. Microstructures and properties of high-entropy alloys[J]. Progress in Materials Science, 2014, 61(4): 1 − 93.
    侯光远. 基于焊缝金属高熵化的钛/钢TIG焊研究[D]. 西安: 西安理工大学, 2015.

    Hou Guangyuan. Research on TIG welding of titanium/steel based on high entropy of weld metal [D]. Xi'an: Xi'an University of Technology, 2015.
    Hao X, Dong H, Xia Y, et al. Microstructure and mechanical properties of laser welded TC4 titanium alloy/304 stainless steel joint with (CoCrFeNi)100−xCux high-entropy alloy interlayer[J]. Journal of Alloys and Compounds, 2019, 803: 649 − 657. doi: 10.1016/j.jallcom.2019.06.225
    翟秋亚, 刘帅宾, 杨全虎, 等. Ta1/Ta8Ni30Cr20Cu42/0Cr18Ni9储能焊接头组织与性能[J]. 焊接学报, 2020, 41(10): 60 − 64. doi: 10.12073/j.hjxb.20200822001

    Zhai Qiuya, Liu Shuaibin, Yang Quanhu, et al. Microstructure and properties of Ta1/Ta8Ni30Cr20Cu42/0Cr18Ni9 energy storage welding joint[J]. Transactions of the China Welding Institution, 2020, 41(10): 60 − 64. doi: 10.12073/j.hjxb.20200822001
    Kulkarni R, Murty B S, Srinivas V. Study of microstructure and magnetic properties of AlNiCo(CuFe) high entropy alloy[J]. Journal of Alloys and Compounds, 2018, 746: 194 − 199. doi: 10.1016/j.jallcom.2018.02.275
    Zhang M, Zhang L, Fan J, et al. Microstructure and enhanced mechanical behavior of the Al7Co24Cr21Fe24Ni24 high-entropy alloy system by tuning the Cr content[J]. Materials Science and Engineering A, 2018, 733: 299 − 306. doi: 10.1016/j.msea.2018.07.069
    Xin Xian, Lin Lijing, Zhong Zhihong, et al. Precipitation and its strengthening of Cu-rich phase in CrMnFeCoNiCux high-entropy alloys[J]. Materials Science & Engineering A, 2018, 713: 134 − 140.
    Qiu X W, Liu C G. Microstructure and properties of Al2CrFeCoCuTiNix high-entropy alloys prepared by laser cladding[J]. Journal of Alloys & Compounds, 2013, 553: 216 − 220.
  • Related Articles

    [1]ZENG Jie, TAN Haohao, YANG Fang, ZHOU Wangjun, LI Liangxing, CHANG Guiqin, LUO Haihui. Reliability analysis of solder layer of IGBT module under passive thermal cycling[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(7): 123-128. DOI: 10.12073/j.hjxb.20220517002
    [2]SUN Lei, ZHANG Yi, CHEN Minghe, ZHANG Liang, MIAO Naiming. Finite element analysis of solder joint reliability of 3D packaging chip[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(1): 49-53. DOI: 10.12073/j.hjxb.20201021002
    [3]JIANG Nan, ZHANG Liang, LIU Zhiquan, XIONG Mingyue, LONG Weimin. Reliability analysis of thermal shock for SnAgCu solder joints of FCBGA devices[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(9): 39-42. DOI: 10.12073/j.hjxb.2019400232
    [4]YANG Song, YANG Yuanming. U-tube local damage analysis and preventable method for AP1000 steam generator during local post weld heat treatment[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(6): 90-94.
    [5]LI Chang, WANG Bingchen, HA Xing, YU Xiaoguang. Analysis of motion accuracy reliabilityfor arc welding robot based on ADAMS/View[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(7): 63-66.
    [6]YE Huan, XUE Songbai, ZHANG Liang, WANG Hui. Finite element analysis on reliability of lead-free soldered joints for CSP device[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (11): 93-96.
    [7]JI Feng, XUE Songbai, ZHANG Liang, WANG Hui. Finite element analysis on soldered joint reliability of QFN device[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (10): 57-60.
    [8]GAO Lili, XUE Songbai, ZHANG Liang, SHENG Zhong. Finite element analysis on influencing factors of soldered column reliability in a CCGA device[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (7): 93-96.
    [9]LIN Guoxiang, YE Jinbao, QIU Changjun. Calculating method of reliability on anti fatigue fracture of weld[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (1): 50-52.
    [10]ZHANG Liang, XUE Songbai, LU Fangyan, HAN Zongjie. Finite element analysis on soldered joint reliability of QFP device with different solders[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (10): 45-48, 52.
  • Cited by

    Periodical cited type(5)

    1. 孙浩东,吴晓晔,胡志伟,唐晓田,王志鹏. 窄边结构相变热控构件的搅拌摩擦焊工艺研究. 当代化工研究. 2025(04): 148-150 .
    2. 张继元,毛育青,王金锴,黎宁,黄清. 旋转速度对铝合金锁底结构搅拌摩擦焊接头成形及力学性能的影响. 精密成形工程. 2024(08): 61-67 .
    3. 林森,党键,韩晓辉,李刚卿,张铁浩,赵存金. 基于焊接速度的6082铝合金FSW接头组织与力学性能调控研究. 电焊机. 2024(09): 30-37+54 .
    4. 陶虎威,郝云飞,邵明皓,姜炳鑫,李志航,张华. 2219铝合金搅拌摩擦焊缝在弱腐蚀下的腐蚀行为. 有色金属工程. 2024(10): 1-10 .
    5. 邓利芬,李超,丁艳霞,熊占兵,毕海娟. 大厚度2219铝合金搅拌摩擦焊组织和性能及工程因素分析. 焊接. 2023(06): 18-23 .

    Other cited types(0)

Catalog

    Article views (359) PDF downloads (31) Cited by(5)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return