Advanced Search
YAO Liangzhen, YIN Yisheng, ZHANG Chengrui, ZHOU Litao, LIU Riliang. Optimization of laser welding quality at corners based on power tracking control[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(5): 102-108. DOI: 10.12073/j.hjxb.20220519001
Citation: YAO Liangzhen, YIN Yisheng, ZHANG Chengrui, ZHOU Litao, LIU Riliang. Optimization of laser welding quality at corners based on power tracking control[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(5): 102-108. DOI: 10.12073/j.hjxb.20220519001

Optimization of laser welding quality at corners based on power tracking control

More Information
  • Received Date: May 18, 2022
  • Available Online: April 11, 2023
  • Considering energy accumulation caused by acceleration, deceleration, and overlapping spots in corner laser welding, a power tracking control strategy based on temporal-spatial dimensions that accounts for welding specific energy and energy density distribution was developed to control energy distribution and optimize welding quality at corners. Using MATLAB, the heat input of laser welding and the energy density distribution at the corner were analyzed, and the relation between laser power and welding speed was optimized. Using the galvo laser welding control system developed by the team, 3003 aluminum alloy was tested to optimize corner welding quality under different corner conditions. The experimental results show that the power tracking control strategy based on temporal-spatial dimensions can effectively improve welding surface morphology at the corner and ensure weld seam homogeneity, helping inhibit defects at the corner and improve overall weld seam quality without affecting penetration depth.
  • Yuan Y H, Nie L J, Lu Hao, et al. Research on stretching flame correction technology of aluminum alloy ship frame skin welding structure[J]. China Welding, 2022, 31(2): 15 − 22.
    Rao Z, Liu J, Wang P, et al. Modeling of cold metal transfer spot welding of AA6061-T6 aluminum alloy and galvanized mild steel[J]. Journal of Manufacturing Science and Engineering, 2014, 136(5): 051001. doi: 10.1115/1.4027673
    龚利华, 郭为民. 紫外光对铝合金焊接接头腐蚀行为的影响[J]. 焊接学报, 2022, 43(4): 106 − 112.

    Gong Lihua, Guo Weimin. Effect of UV light on the corrosion behaviors of aluminum alloy welded joints[J]. Transactions of the China Welding Institution, 2022, 43(4): 106 − 112.
    范霁康, 倪程, 徐鸿林, 等. 3003铝合金激光焊接组织和力学性能[J]. 焊接, 2021(3): 22 − 25.

    Fan Jikang, Ni Cheng, Xu Honglin, et al. Microstructure and mechanical properties of 3003 aluminum alloy by laser welding[J]. Welding & Joining, 2021(3): 22 − 25.
    Wen X, Wu D, Zhang P, et al. Influence mechanism of the keyhole behavior on penetration depth by in-situ monitoring in pulsed laser welding of aluminum alloy[J]. Optik, 2021, 246: 167812. doi: 10.1016/j.ijleo.2021.167812
    张国滨, 姜梦, 陈曦, 等. 常压/真空环境激光焊接焊缝成形特性及残余应力与变形对比[J]. 焊接学报, 2022, 43(8): 34 − 41.

    Zhang Guobin, Jiang Meng, Chen Xi, et al. A comparison study of characteristics of weld formation, residual stress and distortion of laser welding under atmospheric pressure and vacuum[J]. Transactions of the China Welding Institution, 2022, 43(8): 34 − 41.
    Han Y Q, Han J, Chen Y, et al. Stability of fiber laser-MIG hybrid welding of high strength aluminum alloy[J]. China Welding, 2021, 30(3): 7 − 11.
    吴波, 许力. 小功率激光热导焊接速度规划策略[J]. 焊接学报, 2017, 38(11): 82 − 86.

    Wu Bo, Xu Li. Speed planning strategy of low power laser thermal conductivity welding[J]. Transactions of the China Welding Institution, 2017, 38(11): 82 − 86.
    吴波, 许力. 一种基于三角迂回的激光焊接折角速度算法[J]. 焊接学报, 2017, 38(4): 99 − 102.

    Wu Bo, Xu Li. An algorithm for angular velocity of laser welding based on triangular detour[J]. Transactions of the China Welding Institution, 2017, 38(4): 99 − 102.
    李小平, 汤漾平, 冯清秀. 汽车变速器齿轮与齿圈激光焊接工艺研究[J]. 汽车技术, 2000(4): 22 − 24.

    Li Xiaoping, Tang Yangping, Feng Qingxiu. Study on laser welding technology of automobile transmission gear and ring gear[J]. Automobile Technology, 2000(4): 22 − 24.
    王恒海, 虞钢, 庞铭, 等. 集成化激光制造系统的轴件焊接控制工艺[J]. 中国激光, 2007, 371(11): 1571 − 1576.

    Wang Henghai, Yu Gang, Pang Ming, et al. Welding control process of shaft parts in integrated laser manufacturing system[J]. Chinese Journal of Lasers, 2007, 371(11): 1571 − 1576.
    蒋振国. 基于能量分布调控的中厚板激光焊接质量优化研究[D]. 哈尔滨: 哈尔滨工业大学, 2020.

    Jiang Zhenguo. Research on quality optimization of medium thick plate laser welding based on energy distribution regulation[D]. Harbin: Harbin Institute of Technology, 2020.
    朱铁爽, 张承瑞. 视觉辅助的激光振镜加工畸变校正及精度分析[J/OL]. 计算机集成制造系统. 2021-11-29: 1−18[2023-04-06]. http://kns.cnki.net/kcms/detail/11.5946.tp.20211126.1906.010.html.

    Zhu Tieshuang, Zhang Chengrui. Distortion correction and accuracy analysis of laser galvanometer processing assisted by machine vision[J/OL]. Computer Integrated Manufacturing Systems. 2021-11-29: 1−18[2023-04-06]. http://kns.cnki.net/kcms/detail/11.5946.tp.20211126.1906.010.html.
    Yin Y S, Zhang C R, Zhu T S. Penetration depth prediction of infinity shaped laser scanning welding based on latin hypercube sampling and the neuroevolution of augmenting topologies[J]. Materials, 2021, 14(20): 5984. doi: 10.3390/ma14205984
    Mannik L, Brown N S K. A relationship between laser power, penetration depth and welding speed in the laser welding of seels[J]. Journal of Laser Applications, 1990, 2(3): 22 − 25. doi: 10.2351/1.4745264
  • Related Articles

    [1]CAI Jiasi, WANG Wen, GAO Jianxin, JIN Hongxi, WEI Yanhong. Effect of oscillating laser welding parameters on energy distribution and joint forming of 5A06 thick plate aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2025, 46(1): 48-58. DOI: 10.12073/j.hjxb.20231105001
    [2]XIAO Jun, GE Xinyu, GAI Shengnan, CHEN Shujun, SHENG Weixing, CHEN Shaojun. Regulation of bead formation in GMAW based on oscillating-laser scanning[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(4): 7-12. DOI: 10.12073/j.hjxb.20230423001
    [3]LU Yiting, LU Wei, WANG Bin, MA Xuyi, CHEN Wei. Effect of laser wobble on energy distribution and weld forming of Ti60 alloy laser welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(6): 95-102. DOI: 10.12073/j.hjxb.20220728001
    [4]PANG Bowen, CUI Jiangmei, ZHOU Naixun, KE Wenchao, CHEN Long, AO Sansan, ZENG Zhi. Effect of power distribution on dynamic behavior of molten pool during laser oscillating welding of 5A06 aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(3): 23-30. DOI: 10.12073/j.hjxb.20220404001
    [5]YANG Wen, GENG Shaoning, JIANG Ping, HAN Chu, GU Shiyuan. Process control of the porosity defects in high power oscillating laser welding of medium-thick aluminum alloy plates[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(12): 26-33. DOI: 10.12073/j.hjxb.20210528001
    [6]CHEN Haiyong, DU Xiaolin, DONG Yan. Tiny visual feature extraction of random changing weld[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(5): 97-101.
    [7]LI Ying, FENG Xiaosong, ZHANG Dan, CUI Fan. High power fiber laser welding of lock butt joint of medium 0Cr15Ni5Cu4Nb steel plate[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(7): 97-100.
    [8]YANG Xiaohong, SONG Yonglun, HU Kunping, XIA Yuan. Characteristic of energy distribution at anode and cathode on AC TIG welding arc[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (11): 29-32.
    [9]WANG Wei, WANG XuYou, QI GuoLiang, LEI Zhen, LIN ShangYang, DU Bing. Welding characteristics of laser-low power pulse MIG hybrid welding aluminium alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (8): 37-40,61.
    [10]SUN Hao, ZHANG Zhaodong, LIU Liming. Low power laser welding of magnesium alloy with activating flux[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (4): 49-52.
  • Cited by

    Periodical cited type(2)

    1. 刘海,陈辉. Q345B/304异种钢激光填丝焊接工艺与性能研究. 激光技术. 2024(02): 229-234 .
    2. 于鸿宇,刘智慧,张承瑞,陈赓,高涛. 基于旁轴视觉的激光焊接系统加工定位方法. 焊接学报. 2024(09): 42-49+102 . 本站查看

    Other cited types(0)

Catalog

    Article views (239) PDF downloads (70) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return